CLICK HERE FOR THOUSANDS OF FREE BLOGGER TEMPLATES »

Saturday, December 15, 2007

TELESKOP BUATANKUH...

haiih...sudah lamah gueh gag ngisih....
oiiah...mav kpd pembaca yang waktu ituh ngisih comment....saya mintah mav iang sebesar-besarnyah...atas kelancangan saya...lain kali saya akan menulis narasumber nyah^^...

oiaa...baru-baru ini saya buat teleskop buatan saya...sudah ada 3 teleskop dalam berbagai ukuran...



teropong buatan gue yang kedua


dari awalnyah gueh binggung,,mo beli teropong bintang mahal-mahal....akhirnyah gueh bikin ndirih....^^
biz nih gueh jugah mo bikin teleskop pantul dari cermin make-up bundah gweh^^

Tuesday, July 10, 2007

EPISODE PEMBENTUKAN ATOM

Alam semesta, dengan dimensi yang luasnya tak terjangkau pemahaman manusia, berfungsi pada keseimbangan yang sensitif tanpa pernah gagal. Alam semesta juga berfungsi dengan keteraturan terencana, dan sudah demikian sejak awal pembentukannya. Bagaimana alam raya yang luas ini terwujud, akan menuju ke mana, dan bagaimana hukum-hukum alam bekerja mempertahankan keteraturan dan keseimbangan di dalamnya, selalu menjadi perhatian manusia sejak dulu sampai sekarang. Para ilmuwan telah melakukan penelitian tak terhitung banyaknya mengenai subjek ini dan menghasilkan pelbagai teori dan pendapat. Bagi para ilmuwan yang mengukur rancangan dan keteraturan alam semesta dengan menggunakan akal dan kesadaran mereka, tidaklah susah sama sekali untuk menjelaskan kesempurnaan ini. Ini karena Allah, Zat Mahakuasa, Penguasa seluruh jagat raya, yang menciptakan rancangan sempurna ini. Dan ini sangatlah jelas bagi semua orang yang mau berpikir dan bernalar. Allah menyebutkan kebenaran nyata ini dalam ayat Al Quran:

“Sesungguhnya dalam penciptaaan langit dan bumi, dan silih bergantinya malam dan siang terdapat tanda-tanda bagi orang-orang yang berakal.” (QS. Ali ‘Imran, 3: 190)

Akan tetapi, para ilmuwan yang tidak mengindahkan bukti penciptaan itu mengalami kesulitan besar dalam menjawab pertanyaan yang tak ada habisnya ini. Mereka tidak ragu menggunakan segala cara seperti menghasut, membuat teori-teori palsu tanpa dasar ilmiah apa pun. Bila tersudut, mereka bahkan menipu untuk mempertahankan teori-teori yang bertentangan sepenuhnya dengan kenyataan. Namun seluruh perkembangan ilmu pengetahuan yang terjadi hingga awal abad ke-21, membawa kita pada sebuah fakta tunggal; alam semesta diciptakan dari ketiadaan oleh Allah yang Mahakuasa dan Maha Mengetahui.

Sir Fred Hoyle

Penciptaan Alam Semesta

Selama berabad-abad, orang mencari jawaban untuk pertanyaan “bagaimana asal-usul alam semesta”. Beribu-ribu model alam semesta telah diajukan dan beribu-ribu teori telah dihasilkan di sepanjang sejarah. Namun tinjauan terhadap semua teori ini mengungkapkan bahwa pada intinya mereka hanya terbagi dalam dua model berbeda. Yang pertama adalah konsep alam semesta tak terbatas tanpa permulaan, yang tidak lagi memiliki dasar ilmiah apa pun. Yang kedua adalah bahwa alam semesta diciptakan dari ketiadaan, yang sekarang ini dikenal dalam masyarakat ilmiah sebagai “model standar”.

Model pertama, yang telah terbukti tak dapat bertahan, menyatakan bahwa alam semesta telah ada sejak waktu yang tak terbatas dan akan terus bertahan dalam keadaannya yang sekarang ini. Gagasan alam semesta tak terbatas ini telah berkembang sejak zaman Yunani kuno, dan telah menyebar ke dunia barat sebagai hasil filosofi materialistis dan telah dibangkitkan kembali dengan Renaisans. Inti Renaisans adalah pengkajian kembali hasil kerja para pemikir Yunani kuno. Jadi, filosofi materialis dan konsep alam semesta tak terbatas yang dididukung oleh filosofi ini dicomot dari rak sejarah yang berdebu oleh kepentingan ideologis dan filosofis, dan disampaikan pada manusia sebagai fakta-fakta ilmiah.

Penganut materialisme seperti Karl Marx dan Friedrich Engels dengan penuh semangat merangkul gagasan itu, yang jelas menyediakan dasar-dasar kuat untuk ideologi materialistis mereka. Dengan demikian keduanya memainkan peran penting dalam memperkenalkan model ini pada abad ke-20.

Menurut model “alam semesta tak terbatas”- yang sangat populer di paro pertama abad ke-20 - alam semesta tidak memiliki awal maupun akhir. Alam semesta tidak pernah diciptakan dari tidak ada menjadi ada, tidak pula akan hancur. Menurut teori ini, yang juga menjadi dasar untuk filosofi materialis, alam semesta memiliki struktur yang statis. Namun, temuan-temuan ilmiah belakangan menyatakan bahwa teori ini sama sekali salah dan tidak ilmiah. Alam semesta tidak akan ada tanpa awal; alam semesta ini bermula dan telah diciptakan dari ketiadaan.

Gagasan bahwa alam semesta ini tak terbatas, yaitu tidak berawal, selalu menjadi titik awal ateisme dan ideologi yang mengingkari Allah. Ini karena dalam pandangan mereka, bila alam semesta ini tak berawal, berarti tidak ada yang menciptakan. Namun ilmu pengetahuan segera mengungkapkan bukti pasti bahwa argumen-argumen materialis ini tidak berlaku, dan alam semesta diawali dengan sebuah ledakan dahsyat yang disebut Big Bang. Muncul dari sesuatu yang tidak ada hanya berarti satu hal: “Penciptaan”. Allah, Yang Mahakuasa, menciptakan seluruh alam semesta.

Ahli astronomi Inggris ternama, Sir Fred Hoyle, adalah salah seorang ilmuwan yang penasaran dengan fakta ini. Dengan teori “steady-state”-nya, Hoyle menerima bahwa alam semesta mengalami perluasan, tetapi tetap berkeras bahwa alam semesta tidak terbatas dalam skalanya dan tanpa awal maupun akhir. Menurut model ini, ketika alam semesta meluas, materi muncul secara spontan dan dalam kuantitas sebesar yang dibutuhan. Teori ini, yang berlandaskan pada premis-premis yang sangat tidak praktis atau sulit, dan yang diajukan dengan kepentingan tunggal untuk mendukung gagasan “alam semesta tak terbatas tanpa awal atau akhir”, bertolak belakang dengan teori Big Bang. Padahal teori Big Bang secara ilmiah telah terbukti dengan sejumlah besar pengamatan. Hoyle dan yang lainnya terus mengingkarinya, namun semua perkembangan ilmu alam menyatakan sebaliknya.

Big Bang dan Perluasan Alam Semesta


Alam semesta terbentuk melalui sebuah ledakan besar (Big Bang). Kesempurnaan sistem alam semesta saat ini berawal dari hamburan partikel dan gaya yang tersusun dalam keharmonisan dan keteraturan yang luar biasa sejak tahap awal ledakan besar ini.

Pada abad ke-20, terjadi lompatan besar di bidang astronomi. Pertama, pada tahun 1922, eorang ahli fisika Rusia, Alexandre Friedmann, menemukan bahwa alam semesta tidak memiliki struktur yang statis. Berpijak pada Teori Relativitas Einstein, Friedmann menghitung bahwa sebuah impuls kecil saja dapat mengakibatkan alam semesta meluas atau mengerut. Georges Lemaître, salah seorang ahli astronomi terkenal Belgia, adalah yang pertama kali menyadari pentingnya hitungan ini. Hitungan ini membawanya pada kesimpulan bahwa alam semesta memiliki awal dan terus-menerus meluas sejak permulaan. Ada hal penting lainnya yang diangkat Lemaître: menurutnya, seharusnya ada kelebihan radiasi yang tertinggal dari Big Bang dan ini dapat dilacak. Lemaître yakin bahwa penjelasannya benar walaupun pada awalnya tidak mendapat banyak dukungan dari kalangan ilmuwan. Sementara itu, bukti lebih lanjut bahwa alam semesta meluas mulai bermunculan. Pada waktu itu, Edwin Hubble, seorang ahli astronomi dari Amerika, yang mengamati bintang-bintang dengan teleskop raksasanya, menemukan bahwa bintang-bintang memancarkan cahaya geser merah (red shift) tergantung jarak mereka. Dengan temuan ini, yang diperolehnya di Observatorium Mount Wilson, California, Hubble menantang seluruh ilmuwan yang mengajukan dan membela teori “keadaan-tetap” (steady-state), dan mengguncangkan pondasi model alam semesta yang dianut saat itu.


Georges Lemaître

Temuan-temuan Hubble bergantung pada aturan fisika bahwa spektrum cahaya yang bergerak menuju titik pengamatan cenderung mendekati ungu, sementara spektrum cahaya yang bergerak meninggalkan titik pengamatan cenderung mendekati merah. Ini menunjukkan bahwa benda-benda angkasa yang diamati dari Observatorium Mount Wilson California bergerak menjauhi bumi. Pengamatan selanjutnya mengungkapkan bahwa bintang dan galaksi tidak hanya bergerak menjauhi kita tetapi juga saling menjauhi satu sama lain. Pergerakan benda-benda angkasa ini sekali lagi membuktikan bahwa alam semesta meluas. Dalam buku Stephen Hawking’s Universe, David Filkin menyatakan gagasan menarik tentang perkembangan ini:

Dalam dua tahun, Lemaître mendengar berita yang selama ini berharap pun dia tak berani. Hubble telah mengamati bahwa cahaya dari galaksi adalah geser merah, dan menurut efek Doppler, ini berarti bahwa alam semesta meluas. Kini, ini hanya soal waktu. Einstein tertarik pada kerja Hubble dan memutuskan untuk mengunjunginya di Observatorium Mount Wilson. Pada saat yang sama, Lemaître memberikan kuliah di Institut Teknologi California, dan berhasil menyudutkan sekaligus Hubble dan Einstein. Dia mengajukan teori “atom primitif”-nya dengan hati-hati, selangkah demi selangkah, meyakinkan bahwa seluruh alam semesta telah diciptakan “pada hari yang tidak memiliki hari kemarin”. Dengan sangat saksama, dia menjelaskan seluruh perhitungan matematikanya. Ketika selesai, dia tidak dapat memercayai telinganya sendiri. Einstein berdiri dan menyatakan bahwa apa yang baru saja didengarnya adalah “interpretasi yang paling indah dan paling memuaskan yang pernah kudengar” dan selanjutnya mengakui bahwa menciptakan “konstanta kosmologis” adalah “kesalahan terbesar” dalam hidupnya.



Bawah: Analisis cahaya dua bintang Alpha Centauri selama beberapa waktu menunjukkan serangkaian perubahan pada spektrumnya. Perubahan cahaya geser merah dan biru menunjukkan gambar dua bintang yang menyelesaikan orbit mengitari satu sama lain sekali setiap 80 tahun.


Edwin Hubble



Fakta yang telah mengejutkan Einstein, yang dianggap sebagai salah satu ilmuwan terpenting dalam sejarah, adalah bahwa alam semesta mempunyai permulaan.


Albert Einstein, ketika berkunjung ke Observatorium Wilson, tempat Edwin Hubble melakukan pengamatannya.

Pengamatan lebih jauh pada perluasan alam semesta telah membuka jalan bagi pendapat-pendapat baru. Sejak saat itu, para ilmuwan sampai pada model alam semesta yang semakin kecil apabila seseorang kembali ke masa lampau, dan pada akhirnya mengerut dan konvergen pada satu titik, seperti yang dikemukakan Lemaître. Kesimpulan yang dapat diturunkan dari model ini adalah bahwa pada suatu masa, semua benda alam semesta memadat dalam sebuah titik-massa tunggal yang memiliki “volume nol” karena gaya gravitasinya yang sangat besar. Alam semesta kita menjadi ada sebagai hasil dari ledakan titik-massa yang memiliki “volume nol” ini. Ledakan ini disebut “Big Bang”.


Menurut efek Doppler, bila galaksi berjarak tetap dari bumi, spektrum gelombang cahaya akan muncul pada posisi standar (atas). Bila galaksi bergerak menjauhi kita, gelombang itu akan tampak meregang dan geser merah (tengah). Bila galaksi bergerak menuju kita, gelombang akan tampak menciut dan geser biru (bawah).

Big Bang menunjukkan hal lain. Mengatakan bahwa sesuatu memiliki volume nol itu berarti sama dengan mengatakan bahwa sesuatu itu “tidak ada”. Seluruh alam semesta ini diciptakan dari sesuatu yang “tidak ada” ini. Selanjutnya, alam semesta ini memiliki awal, bertolak belakang dengan pandangan materialisme, yang beranggapan bahwa “alam semesta adalah kekal”.

Big Bang dengan Bukti


Begitu ditetapkan kenyataan bahwa alam semesta mulai terbentuk setelah sebuah ledakan besar, para ahli astrofisika mencapai kemajuan pesat dalam penelitian-penelitian mereka. Menurut George Gamow, apabila alam semesta terbentuk dalam ledakan besar dan tiba-tiba, pastilah tertinggal sejumlah radiasi dari ledakan tersebut yang menyebar rata di seluruh alam semesta.

Pada tahun-tahun setelah hipotesis ini disampaikan, temuan-temuan ilmiah susul-menyusul terjadi, dan semuanya membuktikan kebenaran Big Bang. Pada tahun 1965, dua orang peneliti bernama Arno Penzias dan Robert Wilson menemukan suatu bentuk radiasi yang hingga saat itu tak teramati, yang disebut sebagai “radiasi latar belakang kosmis”. Radiasi ini tidak seperti benda-benda alam semesta lainnya karena keseragamannya yang luar biasa. Radiasi ini tidak terlokalisasi, juga tidak memiliki sumber yang jelas; justru tersebar merata di mana-mana. Segera disadari bahwa radiasi ini adalah peninggalan Big Bang, yang masih memancar sejak ledakan besar itu terjadi. Gamow telah meneliti frekuensi radiasi tersebut, dan menemukan bahwa besarnya mendekati nilai yang telah diramalkan oleh para ilmuwan. Penzias dan Wilson dianugerahi Penghargaan Nobel atas temuan mereka itu.


Tanduk Antena raksasa di Laboratorium Bell di mana Arno Penzias dan Robert Wilson menemukan radiasi latar belakang kosmis. Penzias dan Wilson menerima penghargan Nobel untuk temuan ini pada tahun 1978.

George Smoot dan tim NASA-nya hanya membutuhkan waktu delapan menit untuk mencocokkan tingkatan-tingkatan radiasi yang dilaporkan oleh Penzias dan Wilson, berkat satelit ruang angkasa COBE. Sensor-sensor yang sensitif pada satelit berhasil memberikan kemenangan baru bagi teori Big Bang. Sensor-sensor itu membenarkan keberadaan suatu bentuk yang rapat dan panas sisa dari Big Bang. COBE memotret sisa-sisa nyata dari Big Bang, dan kelompok ilmuwan dipaksa mengakuinya.

Bukti lainnya berhubungan dengan jumlah relatif Hidrogen dan Helium di alam semesta. Perhitungan menunjukkan bahwa proporsi gas hidrogen-helium di alam semesta cocok dengan hitungan teoretis dari apa yang seharusnya tersisa setelah Big Bang.

Penemuan bukti penting ini menyebabkan teori Big Bang diterima sepenuhnya oleh dunia ilmiah. Dalam sebuah artikel di Scientific American yang terbit bulan Oktober 1994 disampaikan bahwa “model Big Bang adalah satu-satunya model yang diakui pada abad ke-20″.

Satu persatu, pengakuan mulai berdatangan dari nama-nama yang mempertahankan konsep “alam semesta tak terbatas” selama bertahun-tahun. Dennis Sciama, yang mempertahankan teori “steady-state” bersama Fred Hoyle, menggambarkan situasi mereka setelah pembuktian Big Bang. Dia berkata bahwa mulanya dia mendukung Hoyle tetapi, setelah bukti mulai menumpuk, dia harus mengakui bahwa permainan ini telah selesai dan teori steady-state harus dibuang.


Peluncuran satelit COBE mensubstansikan lebih lanjut bahwa alam semesta terbentuk dari suatu ledakan besar.

Allah Menciptakan Alam Semesta dari Ketiadaan

Dengan banyaknya bukti yang ditemukan sains, pendapat yang berhubungan dengan “alam semesta tak terbatas” disingkirkan ke tumpukan sampah sejarah gagasan ilmiah. Namun, pertanyaan-pertanyaan yang lebih penting bermunculan: Apa yang ada sebelum sebelum Big Bang? Kekuatan apa kiranya yang dapat menyebabkan ledakan raksasa yang menghasilkan alam semesta yang sebelumnya tidak ada?

Ada satu jawaban yang dapat diberikan untuk pertanyaan apa yang ada sebelum Big Bang: Allah, Yang Mahakuasa, yang menciptakan bumi dan langit dalam keteraturan sempurna. Banyak ilmuwan, terlepas dari mereka beriman atau tidak, terpaksa mengakui kebenaran ini. Walaupun mereka mungkin menolak untuk mengakui kenyataan ini dalam media ilmiah, pengakuan mereka secara tersirat membongkar rahasia mereka. Anthony Flews, seorang filosof ateis terkenal, berkata:

Jelas sekali, pengakuan itu baik bagi jiwa. Oleh karena itu, saya akan mulai dengan mengakui bahwa penganut ateis Stratonis harus merasa malu dengan konsensus kosmologis dewasa ini. Karena tampaknya para ahli kosmologi menyediakan bukti ilmiah untuk apa yang dianggap St. Thomas tidak terbukti secara filosofis; yaitu, bahwa alam semesta mempunyai permulaan. Selama alam semesta dapat dengan mudah dianggap tidak hanya tanpa akhir, namun juga tanpa permulaan, akan tetap mudah untuk mendesak bahwa keberadaannya yang tiba-tiba, dan apa pun yang ditemukan menjadi ciri-cirinya yang paling mendasar, harus diterima sebagai penjelasan akhir. Meskipun saya mempercayai bahwa teori itu (alam semesta tanpa batas) masih benar, tentu saja tidak mudah atau nyaman untuk mempertahankan posisi ini di hadapan kisah Ledakan Besar.



Sebagian ilmuwan seperti H. P. Lipson, fisikawan Inggris yang materialis, mengakui bahwa mereka terpaksa menerima teori Big Bang:

Jika benda hidup bukan disebabkan oleh interaksi atom-atom, gaya-gaya alam, dan radiasi, bagaimana dia muncul? … Namun saya rasa, kita harus … mengakui bahwa satu-satunya penjelasan yang paling masuk akal adalah penciptaan. Saya tahu ini aib bagi para fisikawan, termasuk saya, tapi kita tidak boleh menolak apa yang tidak kita sukai bila bukti-bukti eksperimental mendukungnya.4

Kesimpulannya, sains menunjuk pada suatu realita tunggal apakah para ilmuwan materialis menyukainya atau tidak. Benda dan waktu diciptakan oleh Pencipta, Yang Mahakuasa, dan yang menciptakan langit, bumi dan segala sesuatu yang berada di antaranya: Mahakuasa Allah.

“Allah-lah yang menciptakan tujuh langit dan seperti itu pula bumi. Perintah Allah berlaku padanya, agar kamu mengetahui bahwasanya Allah Mahakuasa atas segala sesuatu, dan sesungguhnya Allah, ilmu-Nya benar-benar meliputi segala sesuatu.” (QS. Ath-Thalaaq, 65: 12)
Tanda-Tanda Al Quran

Selain menjelaskan alam semesta, model Big Bang mempunyai implikasi penting lain. Seperti yang ditunjukkan dalam kutipan dari Anthony Flew di atas, ilmu alam telah membuktikan pandangan yang selama ini hanya didukung oleh sumber-sumber agama.

Kebenaran yang dipertahankan oleh sumber-sumber agama adalah realitas penciptaan dari ketiadaan. Ini telah dinyatakan dalam kitab-kitab suci yang telah berfungsi sebagai penunjuk jalan bagi manusia selama ribuan tahun. Dalam semua kitab suci seperti Perjanjian Lama, Perjanjian Baru, dan Al Quran, dinyatakan bahwa alam semesta dan segala isinya diciptakan dari ketiadaan oleh Allah.

Dalam satu-satunya kitab Allah yang keutuhannya bertahan, Al Quran, terdapat pernyataan tentang penciptaan alam semesta dari ketiadaan, di samping bagaimana kemunculannya, yang sesuai dengan ilmu pengetahuan abad ke-20, meskipun diungkapkan 14 abad yang lalu.

Pertama, penciptaan alam semesta dari ketiadaan diungkapkan dalam Al Quran sebagai berikut:

“Dia Pencipta langit dan bumi. Bagaimana Dia mempunyai anak padahal Dia tidak mempunyai istri. Dia menciptakan segala sesuatu; dan Dia mengetahui segala sesuatu.” (QS. Al An’aam, 6: 101)
Aspek penting lain yang diungkapkan dalam Al Quran empat belas abad sebelum penemuan modern Big Bang dan temuan yang berkaitan dengannya adalah bahwa ketika diciptakan, alam semesta menempati volume yang sangat kecil:

“Dan apakah orang-orang yang kafir tidak mengetahui bahwasanya langit dan bumi itu keduannya dahulu adalah suatu yang padu, kemudian kami pisahkan antara keduanya. Dan dari air kami jadikan segala sesuatu yang hidup. Maka mengapakah mereka tiada juga beriman?” (QS. Al Anbiyaa’, 22: 30)
Terjemahan ayat di atas mengandung pemilihan kata yang sangat penting dalam bahasa aslinya, bahasa Arab. Kata ratk diterjemahkan “suatu yang padu” yang berarti “bercampur, bersatu” dalam kamus bahasa Arab. Kata itu digunakan untuk merujuk dua zat berbeda yang menjadi satu. Frase “Kami pisahkan” diterjemahkan dari kata kerja bahasa Arab, fatk yang mengandung makna bahwa sesuatu terjadi dengan memisahkan atau menghancurkan struktur ratk. Tumbuhnya biji dari tanah adalah salah satu tindakan yang menggunakan kata kerja ini.

Mari kita tinjau lagi ayat tersebut dengan pengetahuan ini di benak kita. Dalam ayat itu, langit dan bumi pada mulanya berstatus ratk. Mereka dipisahkan (fatk) dengan satu muncul dari yang lainnya. Menariknya, para ahli kosmologi berbicara tentang “telur kosmik” yang mengandung semua materi di alam semesta sebelum Big Bang. Dengan kata lain, semua langit dan bumi terkandung dalam telur ini dalam kondisi ratk. Telur kosmik ini meledak dengan dahsyat menyebabkan materinya menjadi fatk dan dalam proses itu terciptalah struktur keseluruhan alam semesta.

Kebenaran lain yang terungkap dalam Al Quran adalah pengembangan jagat raya yang ditemukan pada akhir tahun 1920-an. Penemuan Hubble tentang geser merah dalam spektrum cahaya bintang diungkapkan dalam Al Quran sebagai berikut:

“Dan langit itu Kami bangun dengan kekuasaan (Kami) dan sesungguhnya Kami benar-benar meluaskannya.” (QS. Adz-Dzaariyat, 51: 47)

Singkatnya, temuan-temuan ilmu alam modern mengarah pada kebenaran yang dinyatakan dalam Al Quran dan tidak mendukung dogma materialis. Materialis boleh saja menyatakan bahwa semua itu “kebetulan” namun fakta yang jelas adalah bahwa alam semesta terjadi sebagai hasil penciptaan Allah dan satu-satunya pengetahuan yang benar tentang asal mula alam semesta ditemukan dalam sabda Allah yang diturunkan kepada kita.

Penciptaan Materi dari Momen ke Momen

Seperti yang telah ditunjukkan teori Big Bang sekali lagi, Allah menciptakan alam semesta dari tidak ada. Ledakan besar ini melibatkan banyak gradasi dan detail halus, mendorong manusia untuk berpikir, dan semua materi ini tidak bisa dijelaskan sebagai suatu kebetulan saja.

suhu pada setiap momen ledakan, jumlah partikel atom, gaya-gaya yang bekerja, dan intensitasnya, harus memiliki nilai yang sangat tepat. Bahkan jika satu nilai saja tidak tepat, alam semesta yang kita tinggali sekarang ini tak akan pernah terbentuk. Akhir seperti itu tak akan terelakkan jika satu saja dari nilai yang disebutkan di atas bergeser sedikit yang meskipun secara matematis hanya dinyatakan dengan nilai mendekati “0″.


Apakah kamu tiada mengetahui, bahwa kepada Allah bersujud apa yang ada di langit, di bumi, matahari, bulan, bintang, gunung, dan pohon-pohonan, binatang-binatang yang melata dan sebagian besar daripada manusia? Dan banyak di antara manusia yang telah ditetapkan azab atasnya. Dan barangsiapa yang dihinakan Allah maka tidak seorang pun yang memuliakannya. Sesungguhnya Allah berbuat apa yang Dia kehendaki.
(QS. Al Hajj, 22: 18)

Pendek kata, alam semesta dan bahan penyusunnya, yaitu atom, yang sebelumnya tidak ada menjadi ada segera setelah Big Bang berkat keseimbangan yang telah diciptakan oleh Allah ini. Para ilmuwan melakukan banyak penelitian untuk memahami kronologis kejadian-kejadian yang berlangsung selama proses ini dan pengaturan hukum-hukum fisika yang bekerja pada setiap fase. Fakta-fakta yang sekarang diakui para ilmuwan yang telah bergelut di bidang ini adalah sebagai berikut:

Momen “0″: “Momen” ini adalah momen ketika materi dan waktu belum ada, dan ketika ledakan berlangsung, yang dalam fisika disebut sebagai t (waktu) = 0. Ini berarti bahwa tak ada apa-apa pada saat t = 0 ini. Untuk mendapatkan gambaran kejadian sebelum “momen” - ketika penciptaan dimulai - ini, kita harus tahu hukum-hukum fisika yang ada saat itu, karena hukum-hukum fisika yang berlaku sekarang tidak mencakup momen awal ledakan.

Kejadian-kejadian yang mungkin didefinisikan oleh para ahli fisika dimulai pada 10-43 detik, yang merupakan unit waktu terkecil. Ini adalah frame waktu yang sulit diterima daya pikir manusia. Apa yang terjadi dalam periode waktu sangat kecil, yang bahkan tidak bisa kita pahami ini? Para ahli fisika sampai kini masih belum mampu mengembangkan teori yang menjelaskan dengan detail lengkap kejadian-kejadian pada momen itu.5

Ini karena para ilmuwan tidak memiliki data yang dibutuhkan untuk membuat perhitungan. Aturan matematika dan fisika menemui kebuntuan pada batasan tersebut. Jadi, kejadian sebelum ledakan dan pada momen pertama ledakan, yang setiap detailnya bersandar pada keseimbangan rumit, mengandung realita di luar batasan pikiran manusia dan ilmu fisika.

Penciptaan ini, yang dimulai sebelum adanya waktu, mengarahkan momen demi momen pada pembentukan materi alam semesta dan hukum-hukum fisika. Sekarang mari kita cermati peristiwa-peristiwa yang terjadi dengan ketepatan luar biasa dalam waktu yang sangat singkat selama ledakan ini.

Sebagaimana disebutkan di atas, dalam ilmu fisika, segala sesuatu dapat dihitung dari 10-43 detik dan seterusnya, dan energi serta waktu dapat didefinisikan hanya setelah waktu ini. Pada saat terjadinya penciptaan, suhu men-capai 1032 (100.000.000.000.000.000.000. 000.000.000.000) Kelvin. Sebagai pemban-dingnya, derajat suhu matahari dinyatakan dalam satuan juta (108) dan derajat suhu beberapa bintang lainnya yang jauh lebih besar dari matahari dinyatakan dalam satuan milyar (1011). Bahwa suhu tertinggi yang dapat diukur saat ini terbatas dalam milyaran derajat, mengungkapkan betapa tinggi suhu pada 10-43 detik.

l Bila kita meninjau selangkah ke depan dari periode 10-43 detik ini, kita sampai pada titik ketika waktu berada pada 10-37 detik. Selang waktu antara dua periode ini tidak seperti satu atau dua detik saja. Kita berbicara mengenai selang waktu sesingkat satu per quadrilliun-kali-quadrilliun detik, suhu masih luar biasa tinggi, yaitu 1029 (100.000.000.000.000.000.000.000.000.000) K. Tak satu atom pun tercipta pada fase ini.6

l Satu langkah lagi, kita sampai pada 10-2 detik. Periode waktu ini mengindikasikan seperseratus detik. Saat ini, suhu seratus milyar derajat. Pada titik ini, “alam semesta awal” mulai terbentuk. Partikel-partikel seperti proton dan netron yang membentuk inti atom belum lagi muncul. Hanya ada elektron dan anti-partikelnya, positron (anti-elektron), karena temperatur dan kecepatan alam semesta pada titik ini hanya memungkinkan pembentukan partikel-partikel ini. Kurang dari sedetik setelah ledakan terjadi, terbentuklah elektron-elektron dan positron-positron.

Mulai dari momen ini dan seterusnya, waktu pembentukan setiap partikel sub-atom sangatlah penting. Setiap partikel harus muncul pada momen yang tepat sehingga hukum-hukum fisika yang sekarang dapat terbentuk. Pemilihan partikel apa yang terbentuk terlebih dahulu sangat penting. Bahkan sedikit saja penyimpangan dalam urutan atau waktu, akan menggagalkan pembentukan alam semesta menjadi sekarang ini.

Mari kita berhenti sejenak dan berpikir.

Teori Big Bang memberikan bukti keberadaan Allah dengan menunjukkan bahwa semua materi yang membentuk alam semesta berasal dari ketidakadaan. Bahkan teori ini menunjukkan bahwa bahan penyusun - yaitu atom-atom - juga menjadi ada dalam waktu kurang dari satu detik setelah Big Bang.

Keseimbangan dan keteraturan yang luar biasa dalam partikel-partikel ini layak dijelaskan. Alam semesta mendapatkan kondisinya yang sekarang ini berkat keseimbangan ini, yang akan digambarkan lebih terrinci pada halaman-halaman berikutnya. Keseimbangan ini pula yang membuat kita hidup damai. Pendeknya, pengaturan yang sempurna dan hukum-hukum yang konsisten, “hukum-hukum fisika”, telah terbentuk dari ledakan yang biasanya menghasilkan kekacauan dan ketidak-teraturan. Ini membuktikan bahwa setiap momen yang menyertai penciptaan alam semesta, termasuk Big Bang, telah dirancang dengan sempurna. Sekarang, mari kita melihat perkembangan selanjutnya.

l Langkah berikutnya adalah momen ketika waktu telah berselang 10-1 detik. Pada saat ini, suhu adalah 30 milyar derajat. Belum lagi satu detik terlewati dari t=0 ke tahap ini. Saat ini, netron, proton dan partikel atom lainnya mulai muncul. Netron dan proton - struktur yang akan kita analisis pada bab berikutnya - diciptakan dari yang tidak ada dalam periode waktu yang bahkan lebih pendek dari satu detik.

l Mari kita perhatikan detik pertama setelah ledakan. Kerapatan masif/kepadatan (massive density) pada waktu itu memberikan angka sangat besar. Menurut perhitungan, nilai kepadatan massa pada tahap ini adalah 3,8 milyar kilogram per liter. Mudah saja menyatakan angka ini dalam milyaran kilogram secara aritmetik dan menunjukkannya di atas kertas. Tapi sangatlah tidak mungkin membayangkannya dengan tepat. Untuk memberikan contoh sederhana agar besarnya angka ini dapat dibayangkan, kita dapat mengatakan “jika gunung Everest di Himalaya memiliki kepadatan seperti ini, ia akan menelan bumi kita seketika dengan gaya gravitasi yang dimilikinya.”7



Atom Hidrogen


Atom Helium
l Karakteristik paling istimewa dari momen-momen berikutnya adalah, pada saat itu, suhu telah mencapai tingkat lebih rendah. Pada tahap ini alam semesta telah berusia kira-kira 14 detik, memiliki suhu 3 milyar derajat dan terus meluas dengan kecepatan luar biasa.

Ini adalah stadium di mana inti atom yang stabil, seperti inti Hidrogen dan Helium, mulai terbentuk. Satu proton dan satu netron untuk pertama kalinya telah menemukan kondisi yang kondusif untuk kebersamaan mereka. Dua partikel ini yang mempunyai massa kecil sekali - antara ada dan tidak ada - namun karena gaya gravitasi, mulai menahan kecepatan perluasan yang sangat hebat. Tampak jelas, sebuah proses yang dramatis sadar dan terkendali sedang berlangsung di sini. Sebuah ledakan padat memberikan jalan ke suatu keseimbangan yang hebat dan aturan yang tepat. Proton dan netron telah mulai berkumpul untuk membentuk atom, balok penyusun zat. Jelas tidaklah mungkin bagi par-tikel-partikel ini untuk memiliki kekuatan dan kesadaran untuk membangun keseimbangan yang dibutuhkan untuk pembentukan zat.

l Dalam periode setelah pembentukan ini, suhu alam semesta telah turun 1 milyar derajat. Suhu ini enam puluh kali lebih besar daripada suhu inti matahari kita. Hanya tiga menit dan dua detik berselang dari momen pertama ke momen ini. Saat ini, partikel sub-atomik seperti foton, proton, anti-proton, netron, dan anti-netron berjumlah banyak sekali. Kuantitas semua partikel yang ada dalam fase ini dan interaksi mereka terhadap satu sama lain sangat kritis. Begitu banyaknya sehingga penyimpangan sedikit saja kuantitas partikel mana pun akan merusak tingkat energi yang telah mereka atur dan mencegah perubahan energi menjadi materi.

Ambil elektron dan positron sebagai contoh: bila elek-tron dan positron bergabung, energi akan dihasilkan. Untuk itu, jumlah kedua partikel itu sangat penting. Katakanlah bahwa 10 unit elektron bertemu dengan 8 unit positron. Dalam kasus ini, 8 dari 10 unit elektron tadi berinteraksi dengan 8 unit positron dan menghasilkan energi. Dan sebagai hasilnya, dua unit elektron dilepaskan. Karena elektron adalah salah satu partikel yang membentuk atom, bahan penyusun alam semesta, maka elektron harus tersedia sejumlah yang dibutuhkan dalam fase ini agar alam semesta terbentuk. Dari contoh di atas, bila jumlah positron lebih banyak daripada elektron, maka alih-alih elektron, positronlah yang akan tersisa sebagai hasil dari energi yang dilepaskan dan alam semesta tidak akan pernah terbentuk. Bila jumlah positron dan elektron sama, maka hanya energi saja yang akan dihasilkan dan tidak ada yang tersisa untuk membentuk alam semesta. Namun, kelebihan jumlah elektron telah diatur sedemikian rupa sehingga sesuai dengan jumlah proton di alam semesta pada selang waktu berikutnya setelah momen ini. Dalam atom yang akan terbentuk nanti, jumlah elektron dan proton akan sama.

Jumlah partikel yang muncul setelah Big Bang telah ditentukan dengan perhitungan sangat teliti, yang akhirnya menuju pada pembentukan alam semesta. Profesor Steven Weinberg mengomentari betapa kritisnya interaksi antara partikel-partikel ini:

Bila alam semesta dalam beberapa menit pertama benar-benar terdiri dari jumlah partikel dan anti partikel yang sama, semuanya akan hancur ketika suhu turun di bawah 1.000 juta derajat, dan tidak akan ada yang tersisa kecuali radiasi. Ada bukti sangat kuat yang menentang kemungkinan ini - kita ada di sini! Pasti ada kelebihan jumlah elektron dari positron, proton dari anti-proton, dan netron dari anti-netron, agar ada yang tersisa setelah penghancuran partikel dan anti-partikel untuk menyediakan materi bagi alam semesta ini.8

l Sudah 34 menit dan 40 detik berlalu sejak ledakan. Alam semesta sekarang berusia setengah jam. Suhu telah turun dari yang semula milyaran derajat menjadi 300 juta derajat. Elektron dan positron terus memproduksi energi dengan saling bertabrakan. Saat itu, kuantitas partikel-partikel yang diperlukan telah berimbang sehingga memungkinkan pembentukan alam semesta.

Ketika kecepatan ledakan menurun, partikel-partikel ini, yang hampir tanpa massa, mulai saling berinteraksi. Atom hidrogen pertama terbentuk oleh sebuah elektron yang masuk ke dalam orbit proton. Pembentukan ini mengenalkan kita pada gaya-gaya dasar yang akan sering kita temui di alam semesta.

Tidak diragukan lagi, partikel-partikel ini - yang merupakan rancangan jauh di luar jangkauan pemahaman manusia dan memiliki struktur unik serta bergantung pada keseimbangan rumit - tidak mungkin muncul bersama secara kebetulan dan mengarah ke tujuan yang sama. Kesempurnaan ini menuntun banyak peneliti yang mengkaji topik ini kepada kesimpulan penting: ini adalah “penciptaan” dan ada pengawasan tiada tara pada setiap momen penciptaan ini. Setiap partikel yang diciptakan setelah ledakan dimaksudkan untuk terbentuk pada waktu tertentu, pada suhu tertentu, dan pada kecepatan tertentu. Tampaknya sistem ini, yang bekerja hampir menyerupai jam pengatur, telah diprogram dengan sangat tepat sebelum menjadi aktif. Ini berarti bahwa Big Bang dan alam semesta sempurna yang berasal dari Big Bang telah dirancang sebelum lahirnya ledakan dan setelah itu dijalankan.


Dan Dia menundukkan malam dan siang, matahari dan bulan untukmu. Dan bintang-bintang itu ditundukkan (untukmu) dengan perintah-Nya. Sesungguhnya pada yang demikian itu benar-benar ada tanda-tanda (kekuasaan Allah) bagi kaum yang memahami (nya)
(QS. An Nahl, 16:12)






Kuasa yang mengatur, merancang, dan mengendalikan alam semesta ini tentu saja Allah, Pencipta segala sesuatu.

Rancangan ini dapat diamati tidak hanya dalam atom tetapi juga dalam setiap objek di alam semesta baik besar maupun kecil. Partikel-partikel ini, yang awalnya terhempas saling menjauh dengan kecepatan cahaya, tidak hanya menyebabkan formasi atom-atom hidrogen tetapi juga membangkitkan semua sistem raksasa yang mengisi alam semesta saat ini. Atom, molekul, planet, matahari dan bintang, tata surya, galaksi, quasar, dan lain-lain terbentuk menurut rencana yang agung dan dalam keteraturan dan keseimbangan sempurna. Partikel-partikel yang dibutuhkan untuk membentuk sebuah atom saja tak mungkin secara tidak sengaja muncul bersama-sama dan menciptakan keseimbangan yang indah, sehingga lebih tidak beralasan lagi dan sangat tidak logis untuk menyatakan bahwa planet, galaksi, dan pendeknya, keseluruhan sistem di alam semesta terbentuk begitu saja dan mengembangkan keseimbangannya sendiri. Kehendak yang membuat rancangan unik ini adalah kehendak Allah, sang Pencipta seluruh alam semesta.

Atom-atom lainnya terbentuk setelah atom hidrogen, yang merupakan keajaiban tersendiri. Pada poin ini pelbagai pertanyaan muncul di benak, seperti “bagaimana atom-atom lainnya terbentuk? Mengapa tidak semua proton dan netron membentuk atom hidrogen saja? Bagaimana partikel-pertikel tersebut memutuskan atom apa yang akan mereka bentuk dan seberapa banyak?” Jawaban dari pertanyaan ini kembali membawa kita pada kesimpulan yang sama. Ada suatu kekuatan, kendali dan rancangan yang hebat dalam pembentukan atom hidrogen dan atom-atom lain berikutnya.

Kendali dan rancangan ini melampaui kapasitas akal manusia dan menunjukkan bahwa alam semesta jelaslah sebuah “penciptaan”. Hukum-hukum fisika yang berlaku setelah Big Bang tidak berubah sama sekali selama hampir 17 miliar tahun terlalui. Lebih jauh, hukum-hukum ini didasari oleh perhitungan yang begitu tepatnya sehingga penyimpangan sekadar milimeter dari nilai yang sekarang dapat mengganggu struktur dan ketertiban umum di seluruh alam semesta. Komentar seorang ahli fisika terkenal, Prof. Stephen Hawkings, tentang hal ini sangat menarik. Hawkings menerangkan bahwa fenomena-fenomena yang terjadi didasari oleh perhitungan yang jauh lebih teliti daripada yang dapat kita bayangkan:

Jika satu detik setelah Big Bang, kecepatan perluasan berkurang walaupun hanya satu bagian dari seratus ribu juta juta, alam semesta ini dapat hancur kembali sebelum mencapai ukurannya yang sekarang.9

Big Bang, yang dibangun dengan perhitungan yang begitu teliti, dengan jelas mengungkapkan bahwa waktu, ruang, dan materi tidak menjadi ada dengan begitu saja, namun diciptakan oleh Allah. Sama sekali tidak mungkin, kejadian-kejadian yang disebut di atas berlangsung karena kebetulan saja yang kemudian mengarah pada pembentukan atom, bahan penyusun alam semesta.

Tidaklah mengejutkan, banyak ilmuwan yang meneliti permasalahan ini telah menerima keberadaan sebuah kekuatan tanpa batas dan kehendaknya dalam penciptaan alam semesta. Seorang ahli astrofisika terkenal, Hugh Ross, menjelaskan bahwa sang Pencipta alam semesta ini melampaui semua dimensi:

Bila didefinisikan, waktu adalah dimensi di mana gejala sebab akibat berlangsung. Tidak ada waktu, tidak ada sebab dan akibat. Bila permulaan waktu terjadi bersamaan dengan permulaan alam semesta, seperti yang dikatakan teori ruang-waktu, maka sebab dari alam semesta haruslah berupa suatu entitas yang bekerja dalam dimensi waktu yang sepenuhnya berdiri sendiri dan telah ada sebelum dimensi waktu kosmos. … Ini mengatakan kepada kita bahwa sang Pencipta adalah transenden, bekerja diluar batas-batas dimensional alam semesta kita. Ini mengatakan kepada kita bahwa Tuhan bukanlah alam semesta itu sendiri, Tuhan juga bukan tercakup di dalam alam semesta. 10

Aspek terpenting dari Big Bang adalah, bahwasanya kejadian ini memberi manusia kesempatan untuk memahami kekuasaan Allah dengan lebih baik. Asal-muasal alam semesta dengan segala isinya dari tidak ada, adalah satu dari tanda-tanda besar kekuasaan Allah. Keseimbangan rumit dalam energi pada momen ledakan adalah tanda yang sangat nyata agar kita merenungkan ilmu Allah yang tak berbatas.

Gaya-Gaya Fundamental di Alam Semesta

Kita telah menyebutkan bahwa hukum-hukum Fisika di alam semesta mulai berlaku setelah Big Bang. Hukum-hukum ini didasari “empat gaya fundamental” yang dikenal fisika modern dewasa ini. Gaya-gaya ini terbentuk bersamaan dengan pembentukan partikel sub-atomik pertama pada waktu spesifik segera setelah Big Bang, untuk membentuk seluruh aturan dan sistem alam semesta. Atom-atom yang menyusun materi alam semesta terwujud dan tersebar merata di alam semesta berkat interaksi gaya-gaya ini. Gaya-gaya ini adalah gaya tarik massa atau yang dikenal sebagai gaya gravitasi, gaya elektromagnetik, gaya nuklir kuat, dan gaya nuklir lemah. Semua gaya ini memiliki intensitas dan bidang kerja berbeda. Gaya nuklir kuat dan gaya nuklir lemah beroperasi hanya pada skala subatomik. Dua gaya lainnya - gaya gravitasi dan gaya elektromagnetik - mengatur kumpulan atom, atau yang disebut “materi”. Pengaturan tanpa cacat di atas bumi disebabkan proporsi yang sangat rumit dari gaya-gaya ini. Perbandingan gaya-gaya ini menghasilkan suatu hal yang menarik. Semua materi yang diciptakan dan diedarkan ke penjuru alam semesta setelah Big Bang dibentuk oleh efek gaya-gaya yang sangat jauh berbeda ini. Berikut adalah nilai-nilai keempat gaya fundamental dengan selisih menakjubkan, dalam satuan standar internasional:

Gaya nuklir kuat :15

Gaya nuklir lemah: 7,03×10-3

Gaya gravitasi: 5,90×10-39

Gaya elektromagnetik: 3,05×10-12



Gaya-gaya fundamental ini memungkinkan pembentukan alam semesta melalui penyebaran kekuatan dengan sempurna. Proporsi antara gaya-gaya ini didasarkan pada keseimbangan yang begitu rumit sehingga menimbulkan efek khusus itu terhadap partikel-partikel pada proporsi ini saja.

1. Kekuatan Raksasa di Dalam Inti: Gaya Nuklir Kuat

Sampai di sini, kita telah menyaksikan bagaimana atom diciptakan, momen demi momen, dan keseimbangan rumit yang berlaku dalam penciptaan ini. Kita melihat bahwa semua yang ada di sekitar kita, termasuk diri kita sendiri disusun oleh atom-atom, dan atom-atom ini mengandung banyak partikel. Lalu, apakah gaya yang tetap menyatukan semua partikel yang membentuk inti atom itu? Gaya yang menjaga inti tetap utuh, dan yang merupakan gaya paling dahsyat menurut hukum-hukum fisika, adalah “gaya nuklir kuat”.

Gaya ini menjaga proton dan netron dalam inti atom tetap di tempatnya. Inti atom dibentuk dengan cara demikian. Gaya ini sangat kuat sehingga nyaris menyebabkan proton dan netron dalam inti saling berikatan. Inilah sebabnya partikel-partikel kecil yang memiliki gaya ini disebut juga “gluon” yang dalam bahasa Latin berarti lem. Kekuatan ikatan tersebut disesuaikan dengan sangat teliti. Intensitas gaya ini telah diatur secara spesifik agar proton dan netron tetap berjarak tertentu. Bila gaya ini sedikit saja lebih kuat, maka proton dan netron akan saling bertabrakan. Bila gaya ini sedikit saja lebih lemah, mereka akan saling menjauh. Besarnya gaya ini tepat sesuai dengan yang dibutuhkan untuk membentuk inti atom setelah detik-detik pertama Big Bang.

Pemboman Hiroshima dan Nagasaki menunjukkan sedahsyat apa gaya nuklir kuat ini ketika dilepaskan. Satu-satunya alasan mengapa bom atom sangat efektif adalah pelepasan sejumlah kecil gaya ini yang tersembunyi di dalam inti atom. Hal ini akan dijelaskan lebih terperinci pada bab-bab berikutnya.

2. Sabuk Pengaman Atom: Gaya Nuklir Lemah


Salah satu faktor penting yang menjaga keteraturan di muka bumi ini adalah keseimbangan di dalam atom. Keseimbangan ini menjaga agar segala sesuatu tidak tiba-tiba terurai atau memancarkan radiasi berbahaya. “Gaya nuklir lemah” bertanggung jawab atas keseimbangan antara proton dan netron dalam inti atom. Gaya ini memainkan peran penting dalam menjaga keseimbangan inti yang mengandung sejumlah besar netron dan proton.

Sembari keseimbangan ini dijaga, sebuah netron, bila dibutuhkan dapat berubah menjadi proton. Karena jumlah proton dalam inti di akhir proses berubah, atom berubah pula dan menjadi atom yang lain. Di sini hasilnya sangatlah penting. Sebuah atom berubah menjadi atom berbeda tanpa terurai dan meneruskan eksistensinya. Sabuk pengaman ini melindungi organisme hidup dari bahaya yang akan muncul jika partikel-partikel terurai tanpa terkendali dan membahayakan manusia

3. Gaya yang Menjaga Elektron Tetap pada Orbitnya: Gaya Elektromagnetik

Penemuan gaya ini mengantarkan kita pada era baru dalam dunia fisika. Baru pada saat itulah dipahami bahwa setiap partikel mengandung “muatan listrik” menurut karakteristik strukturnya masing-masing dan bahwa ada gaya di antara muatan-muatan listrik ini. Gaya ini membuat partikel-partikel yang bermuatan listrik berlawanan saling tarik dan partikel-partikel bermuatan sama akan saling tolak, sehingga menjamin proton dalam inti atom dan elektron yang mengorbit di sekelilingnya tarik-menarik. Dengan cara ini, “inti” dan “elektron”, dua elemen dasar atom, tetap di tempat mereka.


Manusia bisa berada di lingkungan tanpa gravitasi hanya selama periode tertentu dengan menggunakan perlengkapan khusus. Makhluk hidup hanya dapat bertahan hidup dalam sistem yang mempunyai gravitasi.


Perubahan kekuatan sekecil apa pun pada gaya ini dapat menyebabkan elektron-elektron terlepas jauh dari inti atau melekat pada inti. Dalam kedua kasus ini, atom tidak mungkin terbentuk, sehingga alam semesta pun tidak ada. Tetapi, sejak momen pertama gaya ini terbentuk, proton-proton dalam inti menarik elektron dengan besar gaya yang tepat dibutuhkan untuk pembentukan atom.

4. Gaya yang Menjaga Alam Semesta Tetap Utuh: Gaya Gravitasi

Gravitasi adalah satu-satunya gaya yang dapat kita rasakan sehari-hari, namun sedikit sekali yang kita ketahui tentangnya. Gaya gravitasi sesungguhnya disebut “gaya tarik massa”. Gaya ini paling lemah dibandingkan gaya lainnya, namun karena gaya inilah, massa-massa yang sangat besar tarik-menarik. Gaya inilah yang membuat galaksi dan bintang-bintang di alam semesta tetap berada pada orbitnya masing-masing. Bumi dan planet-planet lain tetap di dalam orbit tertentu mengitari matahari, sekali lagi karena adanya gaya gravitasi. Kita dapat berjalan di atas bumi karena gaya ini. Bila ada pengurangan dalam nilai gaya ini, bintang-bintang akan jatuh, bumi akan keluar dari orbitnya, dan kita akan bertebaran ke luar angkasa. Bila nilainya lebih besar sedikit saja, bintang-bintang akan bertabrakan, bumi akan bergerak menuju matahari, dan kita akan melesak ke dalam kerak bumi. Walaupun tampak kecil sekali kemungkinan ini bagi Anda, semua itu tidak akan terelakkan bila gaya ini bergeser dari nilainya yang sekarang sekalipun hanya untuk sesaat.


Rancangan agung dan keteraturan sempurna di seluruh alam semesta diatur dengan gaya-gaya fundamental ini. Pemilik keteraturan ini, tak diragukan lagi, adalah Allah, yang menciptakan segalanya dari ketiadaan tanpa cacat. Issac Newton (1642-1727), Bapak fisika modern dan mekanika langit, yang dikenal sebagai “salah satu ilmuwan terbesar di dunia” mengundang perhatian terhadap kenyataan ini:

“Sistem matahari, planet-planet dan komet yang sangat indah ini hanya dapat berlangsung dengan tuntunan dan kendali Zat cerdas dan berkuasa. Zat ini mengatur segalanya, bukan sebagai sukma dunia, namun sebagai Tuhan bagi semuanya, dan demi kekuasaan-Nya. Dia biasa disebut Tuhan, Penguasa semesta alam.”



Semua ilmuwan yang sedang meneliti subjek ini mengakui bahwa ketepatan nilai gaya-gaya fundamental ini sangat penting demi keberadaan alam semesta.

Mengomentari hal ini, seorang ahli biologi molekuler yang terkenal, Michael Denton menyatakan dalam bukunya Nature’s Destiny: How the Laws of Biology Reveal Purpose in the Universe:

Jika, misalnya, gaya gravitasi satu triliun kali lebih kuat, maka alam semesta akan jauh lebih kecil dan sejarah hidupnya jauh lebih pendek. Sebuah bintang rata-rata akan mempunyai massa satu triliun lebih kecil dari matahari dan masa hidup sekitar satu tahun. Di lain pihak, jika gravitasi kurang kuat, tidak ada bintang atau galaksi yang akan pernah terbentuk. Hubungan dan nilai-nilai lain tidak kurang kritisnya. Jika gaya nuklir kuat sedikit lebih lemah saja, satu-satunya unsur yang akan stabil hanya hidrogen. Tidak ada atom lain yang bisa terbentuk. Jika gaya nuklir kuat tersebut sedikit lebih kuat dalam kaitannya dengan elektromagnetisme, maka inti atom yang terdiri dari dua proton menjadi yang paling stabil di alam semesta - yang berarti tidak akan ada hidrogen, dan jika ada bintang atau galaksi yang terbentuk, mereka akan sangat berbeda dari bentuknya sekarang. Jelas sekali, jika semua gaya dan konstanta ini tidak mempunyai nilai tepat demikian, takkan ada bintang, supernova, planet, atom, dan kehidupan.11

Seorang ahli fisika terkemuka, Paul Davies, menyatakan kekagumannya terhadap penetapan nilai-nilai hukum-hukum fisika yang berlaku di alam semesta.

Bila seorang melanjutkan studi kosmologi, keingintahuannya bertambah. Temuan-temuan tentang sejarah kosmos membuat kita menerima bahwa perluasan alam semesta telah diatur dalam gerakannya dengan ketepatan yang sangat mengagumkan.12

Rancangan agung dan keteraturan sempurna yang berlaku di seluruh alam semesta dibangun di atas pondasi yang disediakan gaya-gaya fundamental ini. Pemilik keteraturan ini, tanpa keraguan, adalah Allah, yang menciptakan segala sesuatu tanpa cacat. Allah, Raja seluruh alam, menjaga bintang-bintang tetap berada di orbitnya dengan gaya-gaya terlemah, dan menjaga keutuhan inti atom dengan gaya-gaya terkuat. Semua gaya bekerja sesuai dengan “ukuran” yang telah Dia tentukan. Allah menujukkan keteraturan dalam penciptaan alam semesta dan keseimbangan “yang ditetapkan dengan serapi-rapinya” dalam salah satu ayat-Nya:

“Yang kepunyaan-Nya-lah kerajaan langit dan bumi, dan Dia tidak mempunyai anak, dan tidak ada sekutu bagi-Nya dalam kekuasaan (Nya), dan Dia telah menciptakan segala sesuatu, dan Dia menetapkan ukuran-ukurannya dengan serapi-rapinya.” (QS. Al Furqan, 25: 2)

baca lebih lanjut di www.harunyahya.com/indo/buku

Friday, June 8, 2007

Astronomi Amatir

PERALATAN YANG DIPERLUKAN DALAM OBSERVASI
Setelah lebih mengenal dan lebih sering menyempatkan diri untuk melihat langit malam, biasanya dalam diri kita akan timbul keinginan untuk bisa melihat lebih banyak dari pada yang selama ini biasa kita lihat. Nah, sekaranglah saatnya untuk memeriksa apakah tabungan sudah cukup untuk membeli teleskop.

Sebelum memutuskan untuk membeli teleskop ada baiknya lebih dulu kita membeli binokuler, kalau belum punya. Sebenarnya binokuler adalah sepasang teleskop kecil, dengan binokuler kamu bisa lihat bintang lebih banyak daripada dengan mata telanjang dan binokuler sangat mudah dibawa. Binokuler bisa dengan mudah dibawa kemana saja kita pergi dan siap untuk dipakai setiap saat.

Jangan meremehkan binokuler, karena banyak sekali Astronom Amatir yang berpengalaman yang memakai binokuler. George Alcock, seorang astronom amatir dari Inggris hanya mempergunakan binokuler dalam mengamati langit malam. Dengan berbekal binokuler dia menemukan 4 nova (Nova adalah bintang yang meledak) dan beberapa komet. Suatu rekor yang bukan main.

Keuntungan binokuler, di samping mudah dibawa, adalah bahwa binokuler mempunyai sudut pandang yang lebar, dan dengan binokuler kita bisa memakai kedua mata kita. Sementara dengan tetelskop hanya satu mata yang dipergunakan. Melihat dengan dua mata memberi kesan 3 dimensi suatu pemandangan yang sangat mengesankan.

Kalau kamu sudah punya binokuler cobalah sesekali memakainya untuk melihat bintang (jangan dipakai untuk ngitip tetangga), lebih banyak bintang yang terlihat dibandingkan dengan mata telanjang.

Saya sudah punya binokuler dan sekarang saya ingin punya teleskop. Teleskop yang bagaimana yang sebaiknya saya beli?
Pertanyaan tersebut adalah pertanyaan yang paling sering ditanyakan oleh orang yang kebetulan melihat saya mengamati langit dengan teleskop. Banyak faktor yang harus dipertimbangkan dalam memilih teleskop. Faktor-faktor tersebut adalah seperti yang di bawah ini.


JENIS TELESKOP

Kalau kamu kebetulan punya majalah astronomi, kamu bisa lihat begitu banyak teleskop yang ditawarkan. Dari sekian banyak teleskop, pada umumnya mereke masuk dalam tiga kategori utama, yaitu refraktor, reflektor dan catadioptrik.

1. Refraktor
Refraktor (atau teleskop pembias) adalah tipe teleskop yang mungkin paling banyak dikenal umum. Refraktor mempergunakan lensa sebagai obyektifnya. Lensa ini, yang letaknya di bagian ujung atas dari tabung teleskop, mengumpulkan dan membiaskan cahaya dan kemudian cahaya tadi berjalan menuju ke titik api (fokus) di bagian bawah dari tabung teleskop. Proses pengumpulan dan pembiasan cahaya itu bisa dilihat dalam animasi di kiri. Seperti kita lihat, cahaya (warna kuning) memasuki tabung dari sebelah kiri kemudian dibiaskan oleh lensa obyektif. Cahaya yang sudah dibiaskan tadi kemudian berjalan menuju fokus yang pada animasi ini terletak di seblah kanan gambar.

Refraktor umumnya lebih mahal daripada teleskop jenis lainnya. Sebagai contoh, harga refraktor apokromatik merek Meade berdiameter 4" jauh lebih mahal dibandingkan dengan harga teleskop reflektor Meade yang berukuran 16".
Mengapa begitu? Sebabnya adalah karena membuat lensa yang bermutu tinggi dan apokromat jauh lebih sulit dari pada membuat cermin, dan harga bahan baku yang bermutu tinggi untuk membuat lensa sangat mahal.

Yang harus diingat kalau kamu ingin membeli teleskop refraktor adalah jangan beli "department store telescope". Teleskop apa pula ini? Yang masuk dalam kategori ini adalah teleskop yang umumnya sering kita lihat dijual di department store atau toko kamera. Cara mengenalinya mudah, salah satunya adalah dengan melihat kemasannya. Pada bungkus atau kemasan dari teleskop kacangan ini umunya tertulis bahwa teleskop mempunyai kemampuan pembesaran sampai 500 x. Biasanya tertulis "500 x magnification. Bisa dipastikan bahwa kamu akan kecewa dengan teleskop seperti ini. Lebih baik uang yang ada dipakai untuk membeli binokuler.

Indikator lainnya adalah harga. Jangan pernah membeli teleskop yang harganya di bawah $300. Teleskop kacangan ini umunya dijual dengan harga murah, kurang dari $200.

2. Reflektor
Teleskop Reflektor (pemantul) yang paling populer adalah Newtonian. Diberi nama Newtonian karena yang desain teleskop ini ditemukan oleh Isaac Newton.

Reflektor Newtonian tidak mempergunakan lensa sebagai obyektifnya tetapi mempergunakan cermin. Cara kerjanya adalah sebagai berikut: Satu cermin cekung atau sering disebut cermin primer diletakkan di bagian bawah tabung teleskop (dalam animasi di sini di sebelah kanan), cermin primer ini memantulkan cahaya yang memasuki tabung (dalam animasi dari sebelah kiri) ke cermin kedua yang datar (cemin sekunder) yang letaknya di bagaian atas tabung. Cermin kedua ini kemudian mngarahkan cahaya tadi ke fokus yang arahnya di sebelah sisi tabung.
Teleskop jenis inilah yang sering dibuat oleh pembuat teleskop amatir.

3. Katadioptrik
Teleskop Katadioptrik adalah seperti perpaduan dari pemantul dan pembias, meskipun tidak persis demikian. Katadioptrik mempergunakan lensa korektor dan dua cermin. Lensa korektor terletak pada bagian depan tabung, dan cermin primer yang terletak pada bagian belakang tabung. Sedangkan cermin sekundernya diletakkan di tengah lensa korektor.
Cara kerjanya, cahaya memasuki tabung melewati lensa korektor menuju ke cermin primer (cermin cekung). Dari cermin primer cahaya dipantulkan ke cermin cembung sekunder yang terletak di tengah lensa korektor. Cermin cembung kemudian memantulkan cahaya tadi ke fokus yang letaknya dibagian belakang tabung.
Dua jenis katadioptrik yang populer adalh Schmidt-Cassegrain dan Maksutov-Cassegrain.


HAL-HAL LAIN YANG HARUS DIPERTIMBANGKAN

Selain mengetahui teleskop macam apa yang akan dibeli, ada beberapa hal lain yang harus diketahui dan dipertimbangkan, yaitu:

1. Jenis Penyangga Teleskop

Ada dua jenis penyangga (mount) untuk teleskop. Yang pertama adalah penyangga tipe alt-azimut dan yang kedua adalah penyangga tipe ekuatorial. Keduanya masih mempunyai beberapa variasi lainnya.

Teleskop dengan penyangga tipe alt-azimut bergerak secara vertikal dan horizontal (atas-bawah, kiri-kanan). Penyangga jenis ini tidak mengikuti gerakan bintang di langit, karena itu teleskop harus setiap saat digerakkan dengan cara mendorong tabung teleskop.

Tipe yang kedua adalah tipe ekuatorial. Penyangga tipe ini secara otomatis dapat mengikuti gerakan bintang di langit. Penyangga ini dilengkapi dengan motor penggerak yang menggerakkan teleskop ke arah yang berlawanan dengan arah perputaran (rotasi) bumi. Dengan demikian, teleskop selalu mengikuti gerakan bintang.

Kalau kamu punya rencana untuk menekuni Astrofotografi, ada baiknya kamu membeli teleskop dengan penyangga tipe ekuatorial.
Atau, kalau kamu ingin menekuni Astrofotografi dan juga temasuk orang yang suka mempelajari hal-hal baru, saran saya adalah untuk membeli teleskop dengan penyangga alt-azimut dan memasng sendiri motor penggeraknya. Saya pikir alternatif yang kedua ini jauh lebih murah dan uang yang ada bisa dipakai untuk membeli okuler (eyepieces) yang bermutu.

2. Apperture

Saya mengalami kesulitan mencari terjemahan dari "apperture", karena itu saya akan tetap memakai istilah ini. Apperture adalah diameter dari obyektif teleskop, baik obyektif tu berupa lensa maupun cermin. Jadi kalau kamu lihat teleskop dengan spesifikasi 4" atau 10 cm, berarti teleskop tersebut mempunyai obyektif dengan diamter 4" atau 10 cm.

Diameter dari obyektif teleskop ini berkaitan langsung dengan kemampuan teleskop untuk mengumpulkan cahaya. Coba bandingkan dua teleskop yang mempunyai kualitas optik yang sama tetapi mempunyai diameter obyektif yang berbeda. Misalnya yang pertam berdiamter 4" dan yang kedua berdiamter 6". Melalui teleskop yang obyektifnya berdiameter 6" kamu akan melihat lebih banyak bintang daripada kalau kamu melihat dengan teleskop yang obyektifnya berukuran 4". Hal ini disebabkan karena obyektif berukuran 6" mengumpulkan lebih banyak cahaya dari pada yang 4". Begitu juga obyektif yang berukuran 8" akan mengumpulkan lebih banyak cahaya daripada yang 6", dan seterusnya.

Yang perlu diingat adalah bahwa semakin besar diamter obyektifnya, semakin banyak cahaya yang dikumpulkan. Dan semakin banyak cahaya yang terkumpul, semakin banyak bintang yang bisa terlihat.

"Jadi sebaiknya saya membeli teleskop yang ukurannya sebesar mungkin dong?"
Jawabannya, belum tentu. Karena masih ada hal lain yang harus dipertimbangkan.


3. Portabilitas dan Stabilitas

Portabilitas dan stabilitas harus dipertimbangkan dengan seksama dalam memilih teleskop. Menurut saya, dua hal ini adalah hal yang paling penting sesudah kualitas optik.

Untuk memberi gambaran pentingnya portabiltas dan stabilitas, mari kita bayangkan hal ini.
Kamu merencanakan untuk membeli teleskop dan karena uang bukan masalah, kamu ingin beli teleskop yang paling canggih, teleskop yang dikendalikan komputer. Teleskop yang bisa mengarah ke mana saja hanya dengan memasukkan koordinat obyek.
Dan karena kamu sudah dengar tentang kemampuan mengumpulkan cahaya serta bagaimana bagusnya pemandangan langit malam dilihat melalui teleskop besar, kamu putuskan untuk membeli teleskop Schmidt-Cassegrain berukuran 12.5 inchi. Teleskop yang besar (dan berat tentunya) dengan tripod dan penyangga yang kokoh, yang akan memberikan pemandangan yang indah.

Teleskop akhirnya tiba. Dengan bersemangat kamu hapalkan semua petunjuk cara pemakaian dan setelah hapal langsung bersiap-siap untuk melakukan observasi.
Kamu sudah mempersiapkan tempat di halaman belakang rumah untuk observasi dan sekarang hanya tinggal masalah membawa teleskop ke belakang rumah yang mungkin jaraknya cuma 10 meter.

Karena untuk dibawa sekaligus teleskop tadi terlalu berat (beratnya mungkin sekitar 40 kg) kamu lepaskan teleskop tersebut menjadi tiga bagian, yaitu tabung teleskop, tripod dan wedge.
Pertama kamu bawa tripod ke halaman belakang dan dipasang. Setelah tripod terpasang, kamu kembali ke dalam rumah untuk mengambil wedge-nya. Kamu pasang wedge di tripod dan kembali lagi ke dalam untuk mengambil tabung teleskop. Setelah itu kamu pasang tabung teleskop pada tripod dan wedge. Tiga kali pulang pergi dari dalam rumah ke halaman, dan sebaliknya.
Setelah puas mengamati bintang, kamu bongkar lagi teleskop tadi dan melakukan upacara yang sama menggotong teleskop dan bagian-bagiannya ke dalam rumah. Tiga kali bolak-balik.

Untuk beberapa waktu, rutinitas seperti ini (menggotong-gotong teleskop) bukan masalah buat kamu. dan saya harap hal ini tidak pernah akan menjadi masalah.
Tetapi, kemungkinan besar setelah beberapa saat hal ini akan menjadi masalah. Jangan heran kalau suatu saat kamu merasa malas untuk observasi dan akhirnya semakin jarang meluangkan waktu untuk mengamati bintang.
Jangan pula heran kalau akhirnya kamu punya alasan seperti "Ah, saya terlalu capek malam ini, saya observasi besok malam saja ah." Jangan pernah beranggapan bahwa hal seperti ini tidak akan terjadi pada kamu. Hal ini pernah saya alami.

Dulu setiap kali akan melakukan observasi saya harus ke luar ke halaman belakang yang jaraknya sekitar 20 meter dari rumah. Teleskop saya tidak terlalu besar, tapi juga tidak kecil. Membawanya dalam keadaan utuh siap pakai, amat susah. Saya tidak sekekar Arnold Schwarzenegger, jadi setiap kali akan melakukan observasi teleskop itu saya lepas menjadi dua bagian yaitu tabung dengan wedge-nya dan tripod. Pertama saya bawa tripod ke halaman belakang, saya pasang di sana dan kemudian kembali lagi ke dalam rumah untuk mengambil tabung dan wedge-nya. Kemudian saya pasang.

Bongkar teleskop menjadi dua bagian, pulang pergi dari dan ke halaman dua kali, pasang teleskop, observasi dan sesudah observasi bongkar lagi menjadi dua bagian, pulang pergi lagi dua kali untuk membawa teleskop ke dalam rumah, di dalam rumah saya pasang lagi teleskopnya dan tutup dengan kantong plastik.
Seperti itu rutinitas yang saya lakukan setap kali melakukan observasi. Sampai suatu saat saya merasa malas, makin berkurang melakukan observasi dan akhirnya selama 6 bulan saya tidak menyentuh teleskop saya sama sekali. Dan teleskop saya tidak terlalu besar, hanya berukuran 8"!!
Saya tidak bermaksud untuk menakut-nakuti, saya hanya mengingatkan kemungkinan yang mungkin terjadi. Kalau itu tidak terjadi, saya ikut berbahagia.

Seperti yang telah saya katakan, portabilitas dan stabilitas amatlah penting. Dengan teleskop yang portabel (mudah dibawa-bawa) kita bisa setiap saat melakukan observasi. Dengan teleskop yang portabel, kita hanya butuh waktu sebentar untuk mempersiapkannya. Teleskop yang portabel juga mudah dibawa kemana kita pergi.

Namun demikian, kita memerlukan teleskop yang stabil dan kokoh supaya selama observasi kita tidak terganggu oleh guncangan atau vibrasi teleskop. Teleskop yang tidak stabil dan tidak kokoh hanya akan membawa frustrasi karena setiap kali teleskop digerakkan atau tersentuh sedikit saja, bintang yang terlihat melalui teleskop akan bergerak tidak karuan. Kita tidak akan melihat bintang sebagai titik-titik cahaya di langit, tetapi kita akan melihat titik-titik cahaya yang bergerak naik turun, ke kiri ke kanan. Akhirnya yang tinggal hanya rasxa jengkel dan frustrasi dan minat kita pada astronomi akan hilang.

Jadi, kalau kamu ingin membeli teleskop, belilah teleskop yang portabel dan punya penyangga yang kokoh. Kalau kamu punya teleskop yang portabel teleskop itu akan sering kamu pakai, karena untuk memasang dan membawanya tidak diperlukan usaha yang besar. Dan kalau penyangga teleskop mu kokoh, goncangan atau sentuhan tidak akan mengganggu. Kamu hanya akan melihat bintang-bintang sebagai titik-titik cahaya yang diam, bukan titik-titik cahaya yang berloncatan kian kemari.

Beli Teleskop?..Buat Ajah lagi!!??..


MEMBUAT TELESKOP SENDIRI?
Bertahun-tahun saya mengira bahwa teleskop hanya bisa dibuat di pabrik teleskop yang mempunyai peralatan lengkap. Saya selalu mengira bahwa barang seperti teleskop tidak akan bisa dibuat di rumah. Sampai saya membaca bukunya Terence Dickinson yang berjudul "Backyard Astronomer's Guide". Setelah membaca buku itu saya berubah pikiran: "Oh, ternyata teleskop bisa juga dibuat di rumah, asalkan kita punya peralatan yang lengkap untuk membuat teleskop." Begitulah yang saya kira, ternyata pikiran atau perkiraan saya ini juga salah, tapi baru tiga tahun kemudian, yaitu tahun 2006, saya tahu saya salah.

BAGAIMANA UNTUK MEMULAI
Tidak sedikit orang yang berpikir bahwa untuk bisa menikmati Astronomi sebagai hobi dia harus lebih dulu memiliki teleskop. Mereka beranggapan bahwa mereka harus lebih dulu memiliki teleskop dan sesudah itu barulah mereka bisa mulai mempelajari dan mengamati langit malam.
Menurut saya, pendapat seperti itu salah.

Mungkin bagi sementara orang cara seperti itu, yaitu membeli teleskop dan sesudah itu mulai mempelajari langit malam, bisa berhasil. Tetapi kemungkinan besar yang terjadi adalah kamu akan merasa bosan pada teleskopmu, karena mencari suatu obyek langit malam dengan teleskop bukanlah suatu hal yang mudah terutama jika kita tidak mengenal langit malam. Hal itu bisa diumpamakan dengan usaha untuk mencari tanda ini (*) dengan memakai mikroskop. Lama kelamaan kita akan semakin jarang mempergunakan teleskop kita, sampai akhirnya teleskop itu sama sekali tidak pernah kita sentuh.

Astronomi Amatir adalah hobi yang berbeda dengan hobi lainnya, misalnya dengan hobi mendengarkan musik. Selama dananya ada, kita tidak pelu belajar apapun untuk bisa nikmati musik. Cukup pergi ke toko elektronik untuk beli perangkat audio kemudian membeli kaset atau CD. Pasang dan dan kita langsung bisa menikmati musik apapun yang kita sukai. Sayangnya, Astronomi Amatir tidak dapat dilakukan dengan cara itu.

Dalam hobi ini, meskipun kita memiliki uang banyak dan mampu membeli teleskop jenis apapun yang kita mau, teleskop itu tidak akan berguna kalau kita tidak mengenal langit malam.

Saya tidak bermaksud untuk menakut-nakuti atau menghalangi niat teman-teman untuk memiliki teleskop, sama sekali tidak. Saya cuma memberitahu apa yang mungkin akan terjadi pada diri teman-teman. Kalau itu tidak terjadi, bagus sekali. Dan kalu kamu sudah memiliki teleskop tapi masih mengalami kesulitan untuk mengenali rasi bintang atau menemukan obyek langit, jangan menyerah! Cobalah sekali-sekali keluar tanpa membawa teleskop dan pelajari langit malam.

Jadi saya harus gimana dong?
Perlu diingat bahwa untuk menikmati keindahan langit malam tidak diperlukan perlengkapan yang canggih seperti teleskop yang dikendalikan komputer dan bisa mengarah ke obyek langit manapun secara otomatis. Sama sekali tidak! Untuk bisa menikmati keindahan langit malam kita cuma perlu perangkat optik yang paling canggih yang pernah ada, yaitu mata kita.

Kalau kamu kebetulan tinggal di kota besar dengan langit malam yang terang benderang akibat polusi cahaya, cobalah sekali-sekali pergi ke suatu tempat di luar kota luar kota yang jauh dari polusi cahaya. Cobalah untuk mendongak ke atas dan melihat langit malam (cukup mengherankan betapa sedikitnya orang yang pernah melihat ke langit malam). Kamu akan melihat langit yang dipenuhi oleh banyak sekali bintang. Jauh lebih banyak dari pada yang bisa kamu lihat dari rumahmu di kota. "Kupandang langit penuh bintang bertaburan...berkelap-kelip seumpama intan berlian..." Ingat lagu ini?

Nah, sambil melihat bintang-bintang di langit ada baiknya kita ingat bahwa titik-titik cahaya di langit itu jaraknya amat sangat jauh dari kita. Cahaya dari bintang-bintang itu memerlukan waktu bertahun-tahun, bahkan ribuan tahun, untuk mencapai bumi sampai bisa dilihat oleh mata kita. Padahal cahaya bergerak dengan kecepatan sekitar 350.000 km per detik. Jadi kita bisa bayangkan betapa jauhnya bintang-bintang itu dari kita. Setiap kali saya melihat ke langit malam dan bintang-bintang yang ada, saya selalu merasa sangat kecil dan sangat tidak berarti di tengah alam semesta yang amat luas ini dan selalu teringat pada kebesaran Tuhan.

Kita bisa melihat bagaimana bintang yang satu terlihat lebih terang dari yang lain, dan ada bintang-bintang yang seakan-akan berkumpul dan membentuk formasi tertentu. Kita juga bisa melihat perbedaan warna bintang, ada yang terlihat berwarna biru, ada yang merah, oranye dan ada pula yang berwarna kuning.

Nah, sekarang kita bisa mulai mempelajari langit malam, tentunya masih dengan mata telanjang.
Sewaktu melihat bintang-bintang di langit kita bisa melihat nahwa banyak bintang yang terlihat berkumpul dan membentuk formasi tertentu. Ada yang terlihat seperti mata kail dan di sebelahnya ada yang terlihat seperti poci teh. Ada juga yang terlihat seperti layang-layang. Bentuk-bentuk atau formasi itu diksebut Asterism, beberapa asterism diberi nama dan mereka disebut konstelasi atau rasi bintang.

Untuk bisa mempelajari dan mengenali langit malam dengan baik kita membutuhkan peta, seperti halnya kita butuh peta untuk mengetahui letak suatu tempat tertentu di kota. Tanpa peta kita akan mudah tersesat.
Banyak jenis peta langit yang bisa dipakai, tetapi menurut saya yang paling penting untuk dimiliki (dan selalu dibawa) adalah Planisphere, atau kalau di Indonesia disebut Peta Langit Malam.
Peta Langit Malam bisa diperoleh di Planetarium Jakarta di Taman Ismail Marzuki.

Dengan berbekal Planisphere mulailah mempelajari dan mengenali langit malam.
David Levy (salah satu penemu komet SL-9 yang menabrak planet Jupiter) dalam bukunya "The Sky A User's Guide" menulis bahwa para pemula akan lebih mudah mempelajari dan mengenali langit malam jika melakukannya di kota daripada jika mempelajari langit malam di suatu tempat di luar kota yang langitnya gelap.
"Wah, itu bertentangan dong dengan apa yang tertulis di atas tentang pergi ke luar kota untuk melihat langit malam?" Saya yakin sama sekali tidak, alasannya begini.

Untuk bisa benar-benar menikmati keindahan langit malam, seorang pemula (dan siapa saja) perlu langit yang gelap. Langit yang gelap maksudnya adalah langit malam yang bebas dari polusi cahaya. Karena itu, dia perlu pergi ke tempat yang gelap yang jauh dari polusi cahaya kota. Dari tempat yang gelap di luar kota kita bisa melihat banyak sekali bintang, jauh lebih banyak dari pada yang terlihat dari dalam kota. Dan langit malam yang dipenuhi bintang berwarna-warni adalah pemandangan yang sangat indah.
Sementara kalau kita melihat langit malam dari dalam kota, kita cuma bisa melihat SEDIKIT bintang dan pemandangan seperti itu adalah pemandangan yang biasa-biasa saja, sama sekali tidak menarik.
Karena itu, untuk bisa menghargai keindahan langit malam kita perlu langit yang gelap.

TETAPI, untuk mempelajari dan mengenali langit malam (seperti mengenali konstelasi bintang) apa yang ditulis oleh David Levy adalah benar. Kenapa bisa begitu?

Begini ceritanya:
Dengan Planisphere di tangan kamu ingin mempelajari langit malam dan pergi ke tempat yang langitnya gelap dengan rencana untuk menghapalkan letak dan bentuk konstelasi bintang. Sesampainya di sana, kamu hapalkan bentuk konstelasi yang tergambar di Planisphere. "Hmm, yang ini, yang berbentuk seperti layangan namanya adalah Orion." Setelah merasa cukup hapal dengan bentuk Orion, kamu lihat ke langit...
"Lho, mana dia? Kok bintang-bintang itu nggak ada di Planisphere ini? Kok banyak sekali bintang di atas sana?"

Kenapa bisa begitu? Planisphere hanya memetakan bintang sampai dengan Magnitudo 5. Magnitude adalah skala yang dipakai untuk menentukan tingkat terangnya suatu bintang. Semakin terang suatu bintang, semakin kecil angka magnitudonya. Jadi bintang dengan magnitude 1 terlihat lebih terang dibandingkan dengan bintang yang bermagnitude 2.
Nah, dari suatu tempat yang langitnya gelap, dengan mata telanjang kita bisa melihat bintang dengan tingkat kecerahan sampai dengan magnitude 6 sedangkan Planisphere yang kita pegang hanya memperlihatkan bintang sampai dengan magnitude 5. Karena itu, di tempat yang gelap akan lebih banyak bintang yang bisa kita lihat jika dibandingkan dengan yang tergambar dalam Planisphere. Karena bintang-bintang lainnya itu tidak ada dalam Planisphere, kemungkinan besar kita akan bingung menentukan konstelasi apa yang terlihat.

Saya pernah mengalami hal seperti ini. Pada tahun 1995 kebetulan saya dengan keluarga pergi ke Bali. Meskipun ingin, waktu itu saya tidak bisa membawa teleskop saya dan akhirnya saya hanya membawa binokuler saja.
Suatu malam, saya pergi dari cottage tempat kami menginap di Sanur dan berjalan kaki ke pantai dengan membawa binokuler. Tujuannya ingin melihat bintang.

Sesampainya di pantai saya duduk danmengeluarkan binokuler dari tempatnya, kemudian saya memandang ke langit. Yang saya lihat adalah langit yang dipenuhi oleh bintang, begitu banyak bintang!

Saya perlu waktu sekitar satu menit untuk bisa mengenali konstelasi Orion, padahal Orion termasuk salah satu konstelasi yang amat saya kenali. Begitu juga untuk mengenali konstelasi lain, saya butuh waktu beberapa lama sebelum bisa mengenalinya. Akhirnya saya simpan kembali binokuler saya di dalam tempatnya dan saya hanya berbaring di pantai sambil mengagumi indahnya langit yang dipenuhi bintang. Malam yang sulit untuk dilupakan.

Dari pengalaman itulah saya percaya bahwa apa yang ditulis oleh David Levy benar. Kalau kamu tinggal di kota, kenali langit malam dari rumah. Sempatkan diri untuk mempelajari langit malam dan menghapal letak konstelasi bintang. Tapi ingat, kamu tidak perlu terburu-buru menghapal. Lakukan kapan saja kamu bisa. Tidak menjadi masalah apakah kamu bisa mengenali langit malam dalam waktu satu minggu, satu bulan atau satu tahun. Yang penting adalah kita belajar sesuatu dan bisa menikmati Astronomi sebagai hobi.

BAGIAN TELESKOP


Teleskop Newtonian dengan penyangga tipe Dobsonian terdiri dari beberapa bagian, yaitu:
1. Tabung Optik
-Upper Cage
-Mirror Box
2. Optik
-Cermin Primer
-Mirror Cell
-cermin sekunder atau cermin diagonal
-Diagonal Holder
3. Penyangga
-Rocker Box
-Ground Box

Beberapa masih menggunakan istilah/nama dalam bahasa Inggris karena saya kesulitan mencari terjemahan yang tepat untuk bagian-bagian itu. Kalau punya usul atau terjemahan yang tepat tolong kasih tahu saya.

Itulah bagian-bagian dari teleskop versi saya. Tentu saja kalau kamu mau punya versi sendiri, ya boleh saja. Yang penting mudah diingat.





Foto di atas adalah foto dari Teleskop Pipa (bahasa Inggrisnya Truss Tube Telescope, tolong dong terjemahan yang lebih bagus)yang dibuat oleh salah satu teman saya, Jean-Marc Becker. Diameter dari cermin primernya adalah 20.5 cm (8"). Diamater Dalam dari upper cage dan juga mirror boxnya adalah 22 cmm (8.6") Pada gambar di sebelah kiri bisa kita lihat teleskop dilepas menjadi beberapa bagian, yaitu Tabung Optik, rocker box, platform ekuatorial dan dudukan untuk platform ekuatorial. Selama transportasi, Tabung Optik dilepas lagi menjadi tiga bagian yang lebih kecil, yakni: upper cage, mirror box and pipa.

Gambar sebelah kanan memperlihatkan teleskop dalam keadaan siap pakai, sesudah seluruh bagian-bagiannya dipasang.

Seluruh bagian teleskop tadi (kecuali untuk cerminnya) bisa dibuat dari bahan apa saja. Kalau ada bahan atau material yang tidak bisa ditemukan di sini, pakai imajinasi untuk mencari bahan penggantinya, jangan takut untuk berimporvisasi. Itu antara lain yang diajarkan oleh guru-guru saya dari ATM List.

Saya pernah mengalami kesulitan mencari Teflon, yuntuk digunakan sebagai bantalan (bearing) teleskop. Saya tidak tahu Teflon itu apa dan juga tidak tahu bagaiman bentuknya. Saya cari yang namanya Teflon di banyak tempat, seperti toko material dan Ace Hardware. Saya lupa berapa banyak tempat yang saya datangi. Setiap kali saya bertanya tentang Teflon, mereka selalu memberi tahu saya untuk mencarinya di bagian Perlengkapan Dapur, karena merek selalu mengira saya mencari panci atau penggorengan berlapis Teflon.
Akhirnya, saya ceritakan masalah saya ini pada ATM List. Beberapa teman menawarkan untuk mengirim Teflon milik mereka. Salah satunya, Ron E. Dawes, mengirimkan paket berisi Teflon berikut foto teleskop yang dibuatnya. Akhirnya setelah menerima paket dari Ron, barulah saya tahu bentuk Teflon bagaimana.

Kemudian salah satu anggota list, Richard Schwartz, memberitahu saya untuk memakai telenan plastik (cutting board). Saya bingung, masa iya pakai telenan. Saya tanya pada Richard apakah yang dimaksud adalah telenan yang biasa dipakai untuk motong sayur atau daging di dapur. dan dia menjawab bahwa memang itulah yang dia maksud.
Belakangan saya mengikuti nasehatnya sewaktu mengganti salah satu bantalan di Foucault tester saya. Karena saya tidak mau memakai teflon yang ada, bantalan tersebut saya ganti dengan sepotong bagian dari telenan plastik. Dan ternyata memang bisa dipakai.
Tapi kalau kamu mau memakai telenan untuk bantalan teleskop, sebaiknya beli yang baru, atau kalau mau pakai ang bekas, bilang dulu sama isteri bahwa kamu mau pakai telenannya :-)
Ingat bahwa kalau ada komponen tertentu yang tidak bisa kamu peroleh, kamu selalu bisa menggunakan bahan lain, yang penting jangan lupa untuk improvisasi.

MATERIAL

1. Plywood

Untuk membuat teleskop, kamu bisa memakai bahan-bahan yang tersedia di toko material sekitar kita. Beli selembar plywood berukuran 15 mm atau 19 mm. Oh ya, orang menyebutnya triplek, jadi kalau ke toko material, bilang bahwa kamu mencari triplek. Kamu perlu plywood yang ringan tetapi kuat. Buku Modern Dobsonian karya Richard Berry dan Dave Kriege menjelaskan secara panjang lebar tentang bagaimana cara memilih plywood dalam satu bab tersendiri.

Upper cage dan mirror box untuk teleskop 10" saya (yang belum juga selesai) terbuat dari plywood 15 mm. Plywood yang saya pilih cukup ringan tetapi kurang kuat. Lembaran Plywood yang saya pakai untuk teleskop 5.6" saya memiliki ketebalan 19 mm, lebih kuat dan lebih berat, juga lebih sulit dipotong. Bahan selain Plywood juga bisa digunakan untuk membuat teleskop, misalnya Aluminum atau bahan metal lainnya yang ringan. Plywood lebih sering digunakan karena lebih mudah didapat, dan yang paling penting harganya murah.

2. Alat Pertukangan

Kamu juga harus memiliki alat-alat pertukangan seperti bor, serutan kayu, palu dan gergaji. Kalau kamu punya dana untuk membeli alat pertukangan yang memakai tenaga listrik, ada baiknya kamu beli. Tapi kalau kamu cuma bisa beli alat biasa, jangan khawatir, gergaji dan bor biasa sudah cukup. Untuk membuat upper cage dan mirror box, saya memakai gergaji tangan biasa. meskipun saya akui memotong kayu bukanlah pekerjaan yang mudah,bagi saya amat sulit. Sebabnya adalah karena sebelum ini saya sama sekali tidak pernah memgang alat pertukangan. Satu-satunya yang pernah saya pakai adalah palu, itu juga hanya kalau mau menggantung foto di tembok.

Kalau kamu tidak punya alat pertukangan yang memakai listrik, pakai alat biasa.
Tapi kalau kamu bisa beli alat-alat itu, lebih baik beli akrena alat-alat itu akan banyak membantu dan mempercepat pekerjaan. Selain itu, ada kemungkinan sesudah teleskop pertama mu selesai kamu akan punya keinginan untuk membuat teleskop lain yang lebih besar.
Untuk membantu kamu dalam memilih alat-alat pertukangan yang memakai listrik, coba lihat di Amateur Woodworker Page. Di situ kamu bisa baca petunjuk cara memilih alat yang tepat, penjelasan tentang kegunaannya dan bagaimana bentuk alatnya :-)
Seandainya saya tahu tentang Page ini sebelum saya membeli gergaji listrik :-(

3. Komponen Optik

Cermin adalah bagian terpenting dari teleskop. Cermin yang bagus akan membuat observasi bintang sesuatu yang menyenangkan. Cermin yang jelek hanya akan membawa frustrasi.
Cermin ini bisa dibeli dalam keadan jadi dan siap pakai, atau kamu bisa juga membeli kaca (blank) dan menggosoknya sendiri sampai menjadi cermin.
Di The ATM Page bisa kamu lihat daftar penyalur bahan-bahan kebutuhan pembuat telskop amatir. Bukan cuma itu, ATM Page juga berisi banyak sekali artikel-artikel yang ditulis oleh pembuat teleskop amatir yang berpengalaman. Oage ini adalah salah satu page favorit saya. Saya anjurkan kamu untuk mengunjungi page ini, banyak sekali informasi dan pengetahuan yang bisa kamu dapat dari sini.

Kalau kamu ingin membeli cermin jadi, pesan sesegera mungkin. Biasanya, tergantung pada besar kecilnya diameter cermin, dibutuhkan waktu 30 sampai 90 hari untuk membuat cermin. Sementara menunggu cermin pesananmu jadi, kamu bisa mulai membuat bagian-bagian lain dari teleskop.

Kalau kamu putuskan untuk membuat sendiri cerminnya kamu harus membeli bahan cermin atau blank.
Kalau kamu membeli bahan cermin, kamu punya dua pilihan. Yang pertama adalah membeli kacanya dan kemudian membeli bahan-bahan untuk menggosok cermin (abrasif)dan bahan untuk memoles cermin (polishing compound dan pitch/ter).
Pilihan yang kedua adalah membeli paket cermin (mirror kit). Menurut saya, pilihan yang lebih baik adalah yang kedua. Karena selain dalam paket cermin ini sudah termasuk juga abrasif, polishing compound dan pitch, dalam paket cermin kamu akan memperoleh dua bahan cermin. Jadi kamu bisa membuat dua cermin.
Sayua pribadi belum pernah membeli cermin. Cermin-cermin yang saat ini saya kerjakan adalah hadiah dari dua orang teman saya, Anthony Stillman dan Jean-Marc Becker. Jadi kalau kamu ingin tanya tentang cara membeli paket cermin, tanya pada ATM List.

Hal lain yang harus kamu lakukan kalau kamu ingin membuat cermin sendiri adalah bergabung dengan ATM List. Banyak yang bisa kamu pelajari dari Mailing List ini. Untuk bergabung, datangi The ATM Archives. Di sana kamu bisa ikuti oetunjuk cara bergabung dengan list. Administrator ATM List ini adalah Mel Bartel. Home page Mel juga termasuk dalam daftar yang harus kamu kunjungi, terutama kalau kamu ingin membuat teleskop yang dikendalikan komputer.

Setelah semua bahan-bahan yang diperlukan siap, kamu bisa mulai membuat teleskop.

Thursday, June 7, 2007

Astronomi, Fisika, Matematika


Apa yang menyenangkan dari Astronomi? Kebanyakan orang suka Astronomi karena senang lihat indahnya bintang di langit dan suka lihat-lihat foto-foto keluaran Hubble Space Telescope. Wajar-wajar saja memang, karena alam semesta kita itu memang indah. Tapi kadang banyak juga yang mengira Astronomi itu gampang karena mereka cuma lihat aspek estetika dari Astronomi saja.

Bagi yang pernah terlibat di seleksi Olimpiade Astronomi Indonesia tentunya sudah tau bagaimana sebenarnya ‘belajar Astronomi’ itu. Syarat untuk ikut olimpiade Astronomi adalah memiliki kemampuan matematika dan fisika yang memadai. Astronomi bukan sekedar meneropong bintang dengan teleskop. Seorang peneropong bintang mesti paham juga perhitungan-perhitungan dengan geometri bola agar obyek yang ingin dia lihat dengan teropong bisa didapat.


Kalau ditanya ke anak-anak sekolah, lebih milih mana belajar Astronomi, Fisika atau Matematika? Dua pilihan terakhir kayaknya nggak banyak dipilh sebagai nomor 1, karena fisika dan matematika identik dengan rumus-rumus yang bikin pusing.

Saya nulis ini bukan karena menyesal telah pilih Astronomi. Saya senang disini, saya senang mempelajari fenomena-fenomena fisika (walau agak kurang suka sama rumus-rumus matematika). Hanya karena teringat sama seorang junior, yang pengen masuk Astronomi tapi
J: “Kak, Astronomi itu banyak fisikanya ya?”
S: “Wah, iya, banyak banget. Fisika sama Matematika. Yang kita pelajari tuh kan kondisi fisis bintang, planet, fisika alam semesta, trus dijelasin dengan teori matematis. Kenapa emangnya?”
J: “Yaah, berarti aku salah pilih dong. Aku lemah di fisika nih kak, gimana niy?”
S: (sambil menatap si junior) “Gak papa. Nyantei aja. Nah, dari sekarang coba deh untuk menyukai fisika, biar ntar merasa enjoy …”

Hmmm …

(dikutip dari http://cosmicemission.wordpress.com)

Thursday, May 31, 2007

Jejak Riwayat Optika dan Aplikasinya

Cahaya membuat kita bisa menyaksikan keindahan alam, matematika mengungkapkan strukturnya, dan optika adalah alat kesaksian yang tak ada duanya.

PEMAHAMAN manusia terhadap ilmu optika-asalnya dari bahasa Yunani yang berarti "melihat", dan kini umum diartikan dengan segala hal yang berkaitan dengan sistem, instrumen yang memanfaatkan lensa, cermin, prisma-telah dimulai sekitar 300 tahun Sebelum Masehi, ketika Euklides dari Alexandria dalam karyanya Optica mencatat bahwa cahaya menjalar dalam garis lurus dan menjelaskan hukum pemantulan.

SEMENJAK itu tidak sedikit pemikir dan ilmuwan yang mendalami optika. Dari Alexandria sendiri bahkan masih ada nama besar seperti Ptolomeus yang mendalami topik ini sekitar 140 SM. Pada bergantian milenium pertama ke kedua juga hidup Ibnu al-Haitham yang lahir di Basra dan dikenal sebagai penyelidik cermin sferik dan parabolik, dan telah mengetahui masalah aberasi, pembesaran oleh lensa, dan refraksi atmosfer. Karyanya kemudian diterjemahkan ke dalam bahasa Latin dan dibaca oleh sarjana Eropa.

Bisa dicatat pula sumbangan Roger Bacon dari Inggris sekitar tahun 1267 yang telah menyadari bahwa kecepatan cahaya terbatas dan menjalar melalui medium dengan cara yang analog dengan menjalarnya bunyi.

Penelitian mengenai optik pun diperluas, mulai dari untuk keperluan praktis bagi kebutuhan manusia, seperti usulan penggunaan kacamata untuk membantu penglihatan (oleh Bernard Gordon, Perancis, 1303), hingga untuk penyelidikan gejala alam, seperti memahami terjadinya pelangi (Theodoric dari Freiberg pada dekade pertama abad ke-14).

Berikutnya produk optik penting mulai muncul pada akhir abad ke-16 ketika tahun 1590 Zacharius Jensen dari Belanda membuat satu mikroskop menggunakan lensa gabungan. Selain mikroskop dibuat pula teleskop oleh Hans Lippershey (Belanda, 1608), yang kemudian diikuti oleh Galileo Galilei (Italia), yang pada tahun 1610 mengumumkan sejumlah penemuan astronomik-antara lain empat bulan planet Jupiter- dengan perantaraan teleskop buatannya.

Tentang teleskop ini sendiri, cara pembuatannya lalu diperluas dengan keikutsertaan Isaac Newton yang memperkenalkan teleksop relektor, setelah mengetahui bahwa teleskop refraktor mengandung cacat aberasi khromatik.

OPTIKA sebagai satu cabang dalam ilmu fisika, memang telah menyusuri riwayat yang panjang. Penglihatan manusia sendiri telah menjadi satu kajian yang tidak ada habis-habisnya. Tetapi manusia menyadari, bahwa penglihatannya sungguh amat terbatas, baik untuk melihat ukuran-ukuran kecil, maupun untuk melihat benda-benda yang jauh letaknya. Secara alamiah, kemajuan optika amat didorong oleh upaya manusia untuk "memperkuat" daya penglihatannya.

Sekilas di atas telah dikemukakan riwayat perkembangan riset optika. Kalau di zaman kuno ada nama seperti Aristophanes, di Abad Pertengahan ada Galileo dan Newton, berikutnya juga ada Huygens dan van Leeuwenhoek dalam bidang mikroskop, dan Fresnel dan Doppler dalam optika gelombang.

Dari situs Optics Highlights yang dikelola oleh LS Taylor dari Departemen Teknik Listrik di Universitas Maryland, disebut pula sejumlah akar sistem optika modern.

Disebutkan bahwa kemajuan revolusioner di bidang optika pada abad ke-20 dimulai dengan lahirnya laser pada tahun 1960, yang diikuti dengan perkembangan sistem komunikasi optik yang amat cepat, juga sistem pencitraan (imaging), holografi, sistem penyimpanan dan pengambilan data optikal, serta pemrosesan optikal.

Kini, di tahun-tahun awal abad ke-21 wacana sekitar optika telah bergeser dalam lingkup nano-optika. Seperti apa yang diteliti oleh ilmuwan di Institut Optika Universitas Rochester, nano-optika mempelajari interaksi optik dengan materi pada skala di bawah ukuran panjang gelombang (subwavelength). Di institut ini diteliti antara lain material yang ditata dengan teknik nano (nanostructured), yang bergerak dalam skala sepermiliar meter, untuk aplikasi penginderaan. Dalam penelitian lain, yakni tentang molekul tunggal, pada pertengahan Juli lalu juga telah muncul pula temuan menarik bahwa pada molekul tunggal-sebagaimana pada telepon seluler- ada kesamaan, yaitu antena dipol.

Tren menuju nanoscience dan nanotechnology-juga yang melibatkan nano-optika - tidak bisa disangkal lagi. Ini didorong oleh kecenderungan manusia untuk menjangkau skala-skala yang makin kecil dan makin kecil, di mana hukum-hukum fisika yang dipergunakan pun beralih dari makroskopik ke mikroskopik. Eksploitasi efek kuantum bagi pemanfaatan teknologi merupakan tenaga pendorong yang paling besar di belakang miniaturisasi yang marak dewasa ini.

Kemajuan-kemajuan cepat yang dicapai dewasa ini tentu tak bisa dipisahkan dari kemampuan baru yang diperoleh untuk mengukur dan memanipulasi struktur individual pada skala nano, termasuk yang di dalamnya memanfaatkan sarana optik dan mikroskop elektron resolusi-tinggi.

Dalam tren menuju nanoscience dan nanotechnology inilah dipandang perlu untuk membahas optika dalam skala nano. Dasarnya karena limit difraksi membuat orang tidak bisa memfokuskan cahaya ke dimensi yang lebih kecil daripada separuh panjang gelombang, dan ini tentu saja membuat orang tak bisa berinteraksi secara selektif dengan segi-segi (feature) berskala nano.

Tetapi para ilmuwan tidak pernah menyerah. Dalam beberapa tahun terakhir sudah muncul pendekatan baru untuk men-"ciut"-kan limit difraksi (melalui mikroskopi konfokal) atau bahkan mengatasinya (melalui mikroskopi medan-dekat). Dengan teknik khusus kini bisa dilakukan spektroskopi dan pencitraan fluoresens multifoton dengan resolusi spasial kurang dari 20 nanometer. Sejauh ini, itulah resolusi optik tertinggi dalam satu pengukuran spektroskopik.

Berbagai kemajuan ini, seperti disampaikan oleh Michael Beversluis dari Universitas Rochester, telah coba diaplikasikan dalam penyelidikan struktur nano untuk biologi (misalnya mempelajari protein) dan solid state (semikonduktor).

KIRANYA untuk mengantisipasi berbagai kemajuan di bidang optika modern dan aplikasinya inilah Grup Fotonik di Laboratorium Material Organik Kunjugasi dan Superkonduktor Departemen Fisika ITB menggelar Simposium Internasional Optika Modern dan Aplikasinya di ITB Bandung, 9-13 Agustus lalu.

Diikuti oleh lebih dari 100 peserta dari 10 negara, Simposium-seperti disampaikan oleh Ketua Panitia Pelaksana Prof MO Tjia-mengetengahkan 57 makalah ilmiah. Ditinjau dari jumlah peserta dan makalah yang disajikan, Prof Tjia melihat adanya peningkatan minat terhadap bidang optika modern.

Terlepas dari fakta bahwa ITB dan Indonesia masih ketinggalan jauh dalam riset optika, Rektor ITB Kusmayanto Kadiman dalam sambutannya menyebutkan, Simposium Internasional Optika yang sudah mulai diselenggarakan sejak tahun 2001-jadi tahun 2004 ini untuk keempat kalinya-bermanfaat untuk memajukan komunikasi dan jaringan ilmiah. Kusmayanto juga mencatat, bahwa optika modern memainkan peran yang semakin penting dalam ikhtiar manusia untuk menjawab kebutuhan akan pertukaran dan pemrosesan informasi yang semakin cepat.

Dalam simposium yang didukung oleh sejumlah lembaga internasional seperti Akademi Seni dan Sains Belanda (KNAW), Dinas Pertukaran Akademik Jerman (DAAD), Pusat Fisika Teoretik Internasional Abdus Salam (ICTP), Himpunan Optika Amerika (OSA), UNSCO Jakarta, ambil bagian pula sejumlah peneliti optik dari sejumlah perguruan tinggi di Tanah Air.

Di antara makalah yang disajikan, karya JW Duparre, A Brauer, P Dannberg, P Schreiber, dan A Tunnermann yang membahas sistem pencitraan mikrooptikal kecil termasuk yang menarik perhatian hadirin, karena salah satu contohnya cukup aktual dengan produk yang hangat dewasa ini, yakni telepon seluler berkamera.

Seperti dipaparkan oleh Brauer tanggal 11 Agustus pagi, optika modern berupaya mendapatkan kamera yang resolusinya-ditunjukkan oleh angka piksel-semakin tinggi, namun tetap bisa dikemas dalam ukuran ponsel yang mungil (dalam ukuran milimeter atau submilimeter).